Spend-Analyzer-MCP / email_processor.py
Balamurugan Thayalan
Initial Commit
499796e
raw
history blame
13.7 kB
"""
Email and PDF Processing Module for Bank Statement Analysis
"""
import imaplib
from email.message import Message
import os
import io
import re
import pandas as pd
from typing import List, Dict, Optional, Tuple
from dataclasses import dataclass
from datetime import datetime, timedelta
import PyPDF2
import fitz # PyMuPDF
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import logging
@dataclass
class BankTransaction:
date: datetime
description: str
amount: float
category: str = "Unknown"
account: str = ""
balance: Optional[float] = None
@dataclass
class StatementInfo:
bank_name: str
account_number: str
statement_period: str
transactions: List[BankTransaction]
opening_balance: float
closing_balance: float
class EmailProcessor:
def __init__(self, email_config: Dict):
self.email_config = email_config
self.logger = logging.getLogger(__name__)
self.bank_patterns = {
'chase': r'chase\.com|jpmorgan',
'bofa': r'bankofamerica\.com|bofa',
'wells': r'wellsfargo\.com',
'citi': r'citi\.com|citibank',
'amex': r'americanexpress\.com|amex',
'hdfc': r'hdfcbank\.com',
'icici': r'icicibank\.com',
'sbi': r'sbi\.co\.in',
'axis': r'axisbank\.com',
}
async def connect_to_email(self) -> imaplib.IMAP4_SSL:
"""Connect to email server"""
try:
mail = imaplib.IMAP4_SSL(self.email_config['imap_server'])
mail.login(self.email_config['email'], self.email_config['password'])
return mail
except Exception as e:
self.logger.error(f"Failed to connect to email: {e}")
raise
async def fetch_bank_emails(self, days_back: int = 30) -> List[Message]:
"""Fetch emails from banks containing statements"""
mail = await self.connect_to_email()
mail.select('inbox')
# Calculate date range
end_date = datetime.now()
start_date = end_date - timedelta(days=days_back)
# Search for bank emails
bank_domains = '|'.join(self.bank_patterns.values())
search_criteria = f'(FROM "{bank_domains}" SINCE "{start_date.strftime("%d-%b-%Y")}")'
try:
status, messages = mail.search(None, search_criteria)
email_ids = messages[0].split()
emails = []
for email_id in email_ids[-50:]: # Limit to recent 50 emails
status, msg_data = mail.fetch(email_id, '(RFC822)')
msg = Message.from_bytes(msg_data[0][1])
emails.append(msg)
return emails
finally:
mail.close()
mail.logout()
def identify_bank(self, sender_email: str) -> str:
"""Identify bank from sender email"""
sender_lower = sender_email.lower()
for bank, pattern in self.bank_patterns.items():
if re.search(pattern, sender_lower):
return bank
return "unknown"
async def extract_attachments(self, msg: Message) -> List[Tuple[str, bytes, str]]:
"""Extract PDF attachments from email"""
attachments = []
self.logger.debug(f"Processing message with type: {type(msg)}")
for part in msg.walk():
self.logger.debug(f"Processing part with type: {type(part)}")
try:
if part.get_content_disposition() == 'attachment':
filename = part.get_filename()
if filename and filename.lower().endswith('.pdf'):
content = part.get_payload(decode=True)
attachments.append((filename, content, 'pdf'))
except Exception as e:
self.logger.error(f"Error processing part: {e}, Part type: {type(part)}")
continue
return attachments
class PDFProcessor:
def __init__(self):
self.logger = logging.getLogger(__name__)
self.transaction_patterns = {
'date': r'(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})',
'amount': r'([\$\-]?[\d,]+\.?\d{0,2})',
'description': r'([A-Za-z0-9\s\*\#\-_]+)'
}
async def process_pdf(self, pdf_content: bytes, password: Optional[str] = None) -> StatementInfo:
"""Process PDF bank statement"""
try:
# Try PyMuPDF first
doc = fitz.open(stream=pdf_content, filetype="pdf")
if doc.needs_pass and password:
if not doc.authenticate(password):
raise ValueError("Invalid PDF password")
elif doc.needs_pass and not password:
raise ValueError("PDF requires password")
text = ""
for page in doc:
text += page.get_text()
doc.close()
return await self.parse_statement_text(text)
except Exception as e:
self.logger.error(f"Error processing PDF: {e}")
# Fallback to PyPDF2
return await self.process_pdf_fallback(pdf_content, password)
async def process_pdf_fallback(self, pdf_content: bytes, password: Optional[str] = None) -> StatementInfo:
"""Fallback PDF processing with PyPDF2"""
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_content))
if pdf_reader.is_encrypted:
if password:
pdf_reader.decrypt(password)
else:
raise ValueError("PDF requires password")
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return await self.parse_statement_text(text)
except Exception as e:
self.logger.error(f"Fallback PDF processing failed: {e}")
raise
async def parse_statement_text(self, text: str) -> StatementInfo:
"""Parse bank statement text to extract transactions"""
lines = text.split('\n')
transactions = []
# Bank-specific parsing logic
bank_name = self.detect_bank_from_text(text)
account_number = self.extract_account_number(text)
statement_period = self.extract_statement_period(text)
# Extract transactions based on patterns
for line in lines:
transaction = self.parse_transaction_line(line)
if transaction:
transactions.append(transaction)
# Extract balances
opening_balance = self.extract_opening_balance(text)
closing_balance = self.extract_closing_balance(text)
return StatementInfo(
bank_name=bank_name,
account_number=account_number,
statement_period=statement_period,
transactions=transactions,
opening_balance=opening_balance,
closing_balance=closing_balance
)
def detect_bank_from_text(self, text: str) -> str:
"""Detect bank from statement text"""
text_lower = text.lower()
if 'chase' in text_lower or 'jpmorgan' in text_lower:
return 'Chase'
elif 'bank of america' in text_lower or 'bofa' in text_lower:
return 'Bank of America'
elif 'wells fargo' in text_lower:
return 'Wells Fargo'
elif 'citibank' in text_lower or 'citi' in text_lower:
return 'Citibank'
elif 'american express' in text_lower or 'amex' in text_lower:
return 'American Express'
return 'Unknown Bank'
def extract_account_number(self, text: str) -> str:
"""Extract account number from statement"""
# Look for account number patterns
patterns = [
r'Account\s+(?:Number|#)?\s*:\s*(\*\+\d{4})',
r'Account\s+(\d{4,})',
r'(\*\+\d{4})'
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
return match.group(1)
return "Unknown"
def extract_statement_period(self, text: str) -> str:
"""Extract statement period"""
# Look for date ranges
pattern = r'(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})\s*(?:to|through|-)\s*(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})'
match = re.search(pattern, text, re.IGNORECASE)
if match:
return f"{match.group(1)} to {match.group(2)}"
return "Unknown Period"
def parse_transaction_line(self, line: str) -> Optional[BankTransaction]:
"""Parse individual transaction line"""
# Common transaction line patterns
patterns = [
# Date, Description, Amount
r'(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})\s+(.+?)\s+([\$\-]?[\d,]+\.?\d{0,2})$',
# Date, Amount, Description
r'(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})\s+([\$\-]?[\d,]+\.?\d{0,2})\s+(.+)$'
]
for pattern in patterns:
match = re.search(pattern, line.strip())
if match:
try:
date_str = match.group(1)
if len(match.groups()) == 3:
if '$' in match.group(2) or match.group(2).replace('-', '').replace('.', '').replace(',', '').isdigit():
# Pattern: Date, Amount, Description
amount_str = match.group(2)
description = match.group(3)
else:
# Pattern: Date, Description, Amount
description = match.group(2)
amount_str = match.group(3)
# Parse date
transaction_date = self.parse_date(date_str)
# Parse amount
amount = self.parse_amount(amount_str)
# Categorize transaction
category = self.categorize_transaction(description)
return BankTransaction(
date=transaction_date,
description=description.strip(),
amount=amount,
category=category
)
except Exception as e:
self.logger.debug(f"Failed to parse transaction line: {line}, Error: {e}")
continue
return None
def parse_date(self, date_str: str) -> datetime:
"""Parse date string to datetime object"""
# Try different date formats
formats = ['%m/%d/%Y', '%m-%d-%Y', '%m/%d/%y', '%m-%d-%y']
for fmt in formats:
try:
return datetime.strptime(date_str, fmt)
except ValueError:
continue
# If all fails, return current date
return datetime.now()
def parse_amount(self, amount_str: str) -> float:
"""Parse amount string to float"""
# Clean amount string
clean_amount = amount_str.replace('$', '').replace(',', '').strip()
# Handle negative amounts
is_negative = clean_amount.startswith('-') or clean_amount.startswith('(')
clean_amount = clean_amount.replace('-', '').replace('(', '').replace(')', '')
try:
amount = float(clean_amount)
return -amount if is_negative else amount
except ValueError:
return 0.0
def categorize_transaction(self, description: str) -> str:
"""Categorize transaction based on description"""
desc_lower = description.lower()
categories = {
'Food & Dining': ['restaurant', 'mcdonalds', 'starbucks', 'food', 'dining', 'cafe', 'pizza'],
'Shopping': ['amazon', 'walmart', 'target', 'shopping', 'store', 'retail'],
'Gas & Transport': ['shell', 'exxon', 'gas', 'fuel', 'uber', 'lyft', 'taxi'],
'Utilities': ['electric', 'water', 'gas bill', 'internet', 'phone', 'utility'],
'Entertainment': ['netflix', 'spotify', 'movie', 'entertainment', 'gaming'],
'Healthcare': ['pharmacy', 'doctor', 'hospital', 'medical', 'health'],
'Banking': ['atm', 'fee', 'interest', 'transfer', 'deposit']
}
for category, keywords in categories.items():
if any(keyword in desc_lower for keyword in keywords):
return category
return 'Other'
def extract_opening_balance(self, text: str) -> float:
"""Extract opening balance from statement"""
patterns = [
r'Beginning\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})',
r'Opening\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})',
r'Previous\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})'
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
return float(match.group(1).replace(',', ''))
return 0.0
def extract_closing_balance(self, text: str) -> float:
"""Extract closing balance from statement"""
patterns = [
r'Ending\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})',
r'Closing\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})',
r'Current\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})'
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
return float(match.group(1).replace(',', ''))
return 0.0
# Example usage
if __name__ == "__main__":
# Test PDF processing
pdf_processor = PDFProcessor()
# Example test with sample PDF content
print("PDF Processor initialized successfully")