File size: 13,662 Bytes
499796e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
"""
Email and PDF Processing Module for Bank Statement Analysis
"""
import imaplib
from email.message import Message
import os
import io
import re
import pandas as pd
from typing import List, Dict, Optional, Tuple
from dataclasses import dataclass
from datetime import datetime, timedelta
import PyPDF2
import fitz # PyMuPDF
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import logging
@dataclass
class BankTransaction:
date: datetime
description: str
amount: float
category: str = "Unknown"
account: str = ""
balance: Optional[float] = None
@dataclass
class StatementInfo:
bank_name: str
account_number: str
statement_period: str
transactions: List[BankTransaction]
opening_balance: float
closing_balance: float
class EmailProcessor:
def __init__(self, email_config: Dict):
self.email_config = email_config
self.logger = logging.getLogger(__name__)
self.bank_patterns = {
'chase': r'chase\.com|jpmorgan',
'bofa': r'bankofamerica\.com|bofa',
'wells': r'wellsfargo\.com',
'citi': r'citi\.com|citibank',
'amex': r'americanexpress\.com|amex',
'hdfc': r'hdfcbank\.com',
'icici': r'icicibank\.com',
'sbi': r'sbi\.co\.in',
'axis': r'axisbank\.com',
}
async def connect_to_email(self) -> imaplib.IMAP4_SSL:
"""Connect to email server"""
try:
mail = imaplib.IMAP4_SSL(self.email_config['imap_server'])
mail.login(self.email_config['email'], self.email_config['password'])
return mail
except Exception as e:
self.logger.error(f"Failed to connect to email: {e}")
raise
async def fetch_bank_emails(self, days_back: int = 30) -> List[Message]:
"""Fetch emails from banks containing statements"""
mail = await self.connect_to_email()
mail.select('inbox')
# Calculate date range
end_date = datetime.now()
start_date = end_date - timedelta(days=days_back)
# Search for bank emails
bank_domains = '|'.join(self.bank_patterns.values())
search_criteria = f'(FROM "{bank_domains}" SINCE "{start_date.strftime("%d-%b-%Y")}")'
try:
status, messages = mail.search(None, search_criteria)
email_ids = messages[0].split()
emails = []
for email_id in email_ids[-50:]: # Limit to recent 50 emails
status, msg_data = mail.fetch(email_id, '(RFC822)')
msg = Message.from_bytes(msg_data[0][1])
emails.append(msg)
return emails
finally:
mail.close()
mail.logout()
def identify_bank(self, sender_email: str) -> str:
"""Identify bank from sender email"""
sender_lower = sender_email.lower()
for bank, pattern in self.bank_patterns.items():
if re.search(pattern, sender_lower):
return bank
return "unknown"
async def extract_attachments(self, msg: Message) -> List[Tuple[str, bytes, str]]:
"""Extract PDF attachments from email"""
attachments = []
self.logger.debug(f"Processing message with type: {type(msg)}")
for part in msg.walk():
self.logger.debug(f"Processing part with type: {type(part)}")
try:
if part.get_content_disposition() == 'attachment':
filename = part.get_filename()
if filename and filename.lower().endswith('.pdf'):
content = part.get_payload(decode=True)
attachments.append((filename, content, 'pdf'))
except Exception as e:
self.logger.error(f"Error processing part: {e}, Part type: {type(part)}")
continue
return attachments
class PDFProcessor:
def __init__(self):
self.logger = logging.getLogger(__name__)
self.transaction_patterns = {
'date': r'(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})',
'amount': r'([\$\-]?[\d,]+\.?\d{0,2})',
'description': r'([A-Za-z0-9\s\*\#\-_]+)'
}
async def process_pdf(self, pdf_content: bytes, password: Optional[str] = None) -> StatementInfo:
"""Process PDF bank statement"""
try:
# Try PyMuPDF first
doc = fitz.open(stream=pdf_content, filetype="pdf")
if doc.needs_pass and password:
if not doc.authenticate(password):
raise ValueError("Invalid PDF password")
elif doc.needs_pass and not password:
raise ValueError("PDF requires password")
text = ""
for page in doc:
text += page.get_text()
doc.close()
return await self.parse_statement_text(text)
except Exception as e:
self.logger.error(f"Error processing PDF: {e}")
# Fallback to PyPDF2
return await self.process_pdf_fallback(pdf_content, password)
async def process_pdf_fallback(self, pdf_content: bytes, password: Optional[str] = None) -> StatementInfo:
"""Fallback PDF processing with PyPDF2"""
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_content))
if pdf_reader.is_encrypted:
if password:
pdf_reader.decrypt(password)
else:
raise ValueError("PDF requires password")
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return await self.parse_statement_text(text)
except Exception as e:
self.logger.error(f"Fallback PDF processing failed: {e}")
raise
async def parse_statement_text(self, text: str) -> StatementInfo:
"""Parse bank statement text to extract transactions"""
lines = text.split('\n')
transactions = []
# Bank-specific parsing logic
bank_name = self.detect_bank_from_text(text)
account_number = self.extract_account_number(text)
statement_period = self.extract_statement_period(text)
# Extract transactions based on patterns
for line in lines:
transaction = self.parse_transaction_line(line)
if transaction:
transactions.append(transaction)
# Extract balances
opening_balance = self.extract_opening_balance(text)
closing_balance = self.extract_closing_balance(text)
return StatementInfo(
bank_name=bank_name,
account_number=account_number,
statement_period=statement_period,
transactions=transactions,
opening_balance=opening_balance,
closing_balance=closing_balance
)
def detect_bank_from_text(self, text: str) -> str:
"""Detect bank from statement text"""
text_lower = text.lower()
if 'chase' in text_lower or 'jpmorgan' in text_lower:
return 'Chase'
elif 'bank of america' in text_lower or 'bofa' in text_lower:
return 'Bank of America'
elif 'wells fargo' in text_lower:
return 'Wells Fargo'
elif 'citibank' in text_lower or 'citi' in text_lower:
return 'Citibank'
elif 'american express' in text_lower or 'amex' in text_lower:
return 'American Express'
return 'Unknown Bank'
def extract_account_number(self, text: str) -> str:
"""Extract account number from statement"""
# Look for account number patterns
patterns = [
r'Account\s+(?:Number|#)?\s*:\s*(\*\+\d{4})',
r'Account\s+(\d{4,})',
r'(\*\+\d{4})'
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
return match.group(1)
return "Unknown"
def extract_statement_period(self, text: str) -> str:
"""Extract statement period"""
# Look for date ranges
pattern = r'(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})\s*(?:to|through|-)\s*(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})'
match = re.search(pattern, text, re.IGNORECASE)
if match:
return f"{match.group(1)} to {match.group(2)}"
return "Unknown Period"
def parse_transaction_line(self, line: str) -> Optional[BankTransaction]:
"""Parse individual transaction line"""
# Common transaction line patterns
patterns = [
# Date, Description, Amount
r'(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})\s+(.+?)\s+([\$\-]?[\d,]+\.?\d{0,2})$',
# Date, Amount, Description
r'(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})\s+([\$\-]?[\d,]+\.?\d{0,2})\s+(.+)$'
]
for pattern in patterns:
match = re.search(pattern, line.strip())
if match:
try:
date_str = match.group(1)
if len(match.groups()) == 3:
if '$' in match.group(2) or match.group(2).replace('-', '').replace('.', '').replace(',', '').isdigit():
# Pattern: Date, Amount, Description
amount_str = match.group(2)
description = match.group(3)
else:
# Pattern: Date, Description, Amount
description = match.group(2)
amount_str = match.group(3)
# Parse date
transaction_date = self.parse_date(date_str)
# Parse amount
amount = self.parse_amount(amount_str)
# Categorize transaction
category = self.categorize_transaction(description)
return BankTransaction(
date=transaction_date,
description=description.strip(),
amount=amount,
category=category
)
except Exception as e:
self.logger.debug(f"Failed to parse transaction line: {line}, Error: {e}")
continue
return None
def parse_date(self, date_str: str) -> datetime:
"""Parse date string to datetime object"""
# Try different date formats
formats = ['%m/%d/%Y', '%m-%d-%Y', '%m/%d/%y', '%m-%d-%y']
for fmt in formats:
try:
return datetime.strptime(date_str, fmt)
except ValueError:
continue
# If all fails, return current date
return datetime.now()
def parse_amount(self, amount_str: str) -> float:
"""Parse amount string to float"""
# Clean amount string
clean_amount = amount_str.replace('$', '').replace(',', '').strip()
# Handle negative amounts
is_negative = clean_amount.startswith('-') or clean_amount.startswith('(')
clean_amount = clean_amount.replace('-', '').replace('(', '').replace(')', '')
try:
amount = float(clean_amount)
return -amount if is_negative else amount
except ValueError:
return 0.0
def categorize_transaction(self, description: str) -> str:
"""Categorize transaction based on description"""
desc_lower = description.lower()
categories = {
'Food & Dining': ['restaurant', 'mcdonalds', 'starbucks', 'food', 'dining', 'cafe', 'pizza'],
'Shopping': ['amazon', 'walmart', 'target', 'shopping', 'store', 'retail'],
'Gas & Transport': ['shell', 'exxon', 'gas', 'fuel', 'uber', 'lyft', 'taxi'],
'Utilities': ['electric', 'water', 'gas bill', 'internet', 'phone', 'utility'],
'Entertainment': ['netflix', 'spotify', 'movie', 'entertainment', 'gaming'],
'Healthcare': ['pharmacy', 'doctor', 'hospital', 'medical', 'health'],
'Banking': ['atm', 'fee', 'interest', 'transfer', 'deposit']
}
for category, keywords in categories.items():
if any(keyword in desc_lower for keyword in keywords):
return category
return 'Other'
def extract_opening_balance(self, text: str) -> float:
"""Extract opening balance from statement"""
patterns = [
r'Beginning\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})',
r'Opening\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})',
r'Previous\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})'
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
return float(match.group(1).replace(',', ''))
return 0.0
def extract_closing_balance(self, text: str) -> float:
"""Extract closing balance from statement"""
patterns = [
r'Ending\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})',
r'Closing\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})',
r'Current\s+Balance\s*:\s*\$?([\d,]+\.?\d{0,2})'
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
return float(match.group(1).replace(',', ''))
return 0.0
# Example usage
if __name__ == "__main__":
# Test PDF processing
pdf_processor = PDFProcessor()
# Example test with sample PDF content
print("PDF Processor initialized successfully")
|