|
from typing import Callable, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor
|
|
from TTS.tts.utils.helpers import average_over_durations
|
|
|
|
|
|
class EnergyAdaptor(nn.Module):
|
|
"""Variance Adaptor with an added 1D conv layer. Used to
|
|
get energy embeddings.
|
|
|
|
Args:
|
|
channels_in (int): Number of in channels for conv layers.
|
|
channels_out (int): Number of out channels.
|
|
kernel_size (int): Size the kernel for the conv layers.
|
|
dropout (float): Probability of dropout.
|
|
lrelu_slope (float): Slope for the leaky relu.
|
|
emb_kernel_size (int): Size the kernel for the pitch embedding.
|
|
|
|
Inputs: inputs, mask
|
|
- **inputs** (batch, time1, dim): Tensor containing input vector
|
|
- **target** (batch, 1, time2): Tensor containing the energy target
|
|
- **dr** (batch, time1): Tensor containing aligner durations vector
|
|
- **mask** (batch, time1): Tensor containing indices to be masked
|
|
Returns:
|
|
- **energy prediction** (batch, 1, time1): Tensor produced by energy predictor
|
|
- **energy embedding** (batch, channels, time1): Tensor produced energy adaptor
|
|
- **average energy target(train only)** (batch, 1, time1): Tensor produced after averaging over durations
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels_in: int,
|
|
channels_hidden: int,
|
|
channels_out: int,
|
|
kernel_size: int,
|
|
dropout: float,
|
|
lrelu_slope: float,
|
|
emb_kernel_size: int,
|
|
):
|
|
super().__init__()
|
|
self.energy_predictor = VariancePredictor(
|
|
channels_in=channels_in,
|
|
channels=channels_hidden,
|
|
channels_out=channels_out,
|
|
kernel_size=kernel_size,
|
|
p_dropout=dropout,
|
|
lrelu_slope=lrelu_slope,
|
|
)
|
|
self.energy_emb = nn.Conv1d(
|
|
1,
|
|
channels_hidden,
|
|
kernel_size=emb_kernel_size,
|
|
padding=int((emb_kernel_size - 1) / 2),
|
|
)
|
|
|
|
def get_energy_embedding_train(
|
|
self, x: torch.Tensor, target: torch.Tensor, dr: torch.IntTensor, mask: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Shapes:
|
|
x: :math: `[B, T_src, C]`
|
|
target: :math: `[B, 1, T_max2]`
|
|
dr: :math: `[B, T_src]`
|
|
mask: :math: `[B, T_src]`
|
|
"""
|
|
energy_pred = self.energy_predictor(x, mask)
|
|
energy_pred.unsqueeze_(1)
|
|
avg_energy_target = average_over_durations(target, dr)
|
|
energy_emb = self.energy_emb(avg_energy_target)
|
|
return energy_pred, avg_energy_target, energy_emb
|
|
|
|
def get_energy_embedding(self, x: torch.Tensor, mask: torch.Tensor, energy_transform: Callable) -> torch.Tensor:
|
|
energy_pred = self.energy_predictor(x, mask)
|
|
energy_pred.unsqueeze_(1)
|
|
if energy_transform is not None:
|
|
energy_pred = energy_transform(energy_pred, (~mask).sum(dim=(1, 2)), self.pitch_mean, self.pitch_std)
|
|
energy_emb_pred = self.energy_emb(energy_pred)
|
|
return energy_emb_pred, energy_pred
|
|
|