File size: 3,327 Bytes
17ed7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from typing import Callable, Tuple

import torch
import torch.nn as nn  # pylint: disable=consider-using-from-import

from TTS.tts.layers.delightful_tts.variance_predictor import VariancePredictor
from TTS.tts.utils.helpers import average_over_durations


class EnergyAdaptor(nn.Module):  # pylint: disable=abstract-method
    """Variance Adaptor with an added 1D conv layer. Used to

    get energy embeddings.



    Args:

        channels_in (int): Number of in channels for conv layers.

        channels_out (int): Number of out channels.

        kernel_size (int): Size the kernel for the conv layers.

        dropout (float): Probability of dropout.

        lrelu_slope (float): Slope for the leaky relu.

        emb_kernel_size (int): Size the kernel for the pitch embedding.



    Inputs: inputs, mask

        - **inputs** (batch, time1, dim): Tensor containing input vector

        - **target** (batch, 1, time2): Tensor containing the energy target

        - **dr** (batch, time1): Tensor containing aligner durations vector

        - **mask** (batch, time1): Tensor containing indices to be masked

    Returns:

        - **energy prediction** (batch, 1, time1): Tensor produced by energy predictor

        - **energy embedding** (batch, channels, time1): Tensor produced energy adaptor

        - **average energy target(train only)** (batch, 1, time1): Tensor produced after averaging over durations



    """

    def __init__(

        self,

        channels_in: int,

        channels_hidden: int,

        channels_out: int,

        kernel_size: int,

        dropout: float,

        lrelu_slope: float,

        emb_kernel_size: int,

    ):
        super().__init__()
        self.energy_predictor = VariancePredictor(
            channels_in=channels_in,
            channels=channels_hidden,
            channels_out=channels_out,
            kernel_size=kernel_size,
            p_dropout=dropout,
            lrelu_slope=lrelu_slope,
        )
        self.energy_emb = nn.Conv1d(
            1,
            channels_hidden,
            kernel_size=emb_kernel_size,
            padding=int((emb_kernel_size - 1) / 2),
        )

    def get_energy_embedding_train(

        self, x: torch.Tensor, target: torch.Tensor, dr: torch.IntTensor, mask: torch.Tensor

    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """

        Shapes:

            x: :math: `[B, T_src, C]`

            target: :math: `[B, 1, T_max2]`

            dr: :math: `[B, T_src]`

            mask: :math: `[B, T_src]`

        """
        energy_pred = self.energy_predictor(x, mask)
        energy_pred.unsqueeze_(1)
        avg_energy_target = average_over_durations(target, dr)
        energy_emb = self.energy_emb(avg_energy_target)
        return energy_pred, avg_energy_target, energy_emb

    def get_energy_embedding(self, x: torch.Tensor, mask: torch.Tensor, energy_transform: Callable) -> torch.Tensor:
        energy_pred = self.energy_predictor(x, mask)
        energy_pred.unsqueeze_(1)
        if energy_transform is not None:
            energy_pred = energy_transform(energy_pred, (~mask).sum(dim=(1, 2)), self.pitch_mean, self.pitch_std)
        energy_emb_pred = self.energy_emb(energy_pred)
        return energy_emb_pred, energy_pred