OptiHire / app.py
AdithyaSNair's picture
Update app.py
384abd1 verified
import streamlit as st
import requests
from langchain_groq import ChatGroq
from streamlit_chat import message
import plotly.express as px
import pandas as pd
import sqlite3
from datetime import datetime, timedelta
import re
import os
from streamlit_option_menu import option_menu
import fitz # PyMuPDF
from bs4 import BeautifulSoup
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
RAPIDAPI_KEY = st.secrets["RAPIDAPI_KEY"]
YOUTUBE_API_KEY = st.secrets["YOUTUBE_API_KEY"]
THE_MUSE_API_KEY = st.secrets.get("THE_MUSE_API_KEY", "")
BLS_API_KEY = st.secrets.get("BLS_API_KEY", "")
llm = ChatGroq(
temperature=0,
groq_api_key=GROQ_API_KEY,
model_name="llama-3.1-70b-versatile"
)
@st.cache_data(ttl=3600)
def extract_text_from_pdf(pdf_file):
"""
Extracts text from an uploaded PDF file.
"""
text = ""
try:
with fitz.open(stream=pdf_file.read(), filetype="pdf") as doc:
for page in doc:
text += page.get_text()
return text
except Exception as e:
st.error(f"Error extracting text from PDF: {e}")
return ""
@st.cache_data(ttl=3600)
def extract_job_description(job_link):
"""
Fetches and extracts job description text from a given URL.
"""
try:
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
}
response = requests.get(job_link, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# You might need to adjust the selectors based on the website's structure
job_description = soup.get_text(separator='\n')
return job_description.strip()
except Exception as e:
st.error(f"Error fetching job description: {e}")
return ""
@st.cache_data(ttl=3600)
def extract_requirements(job_description):
"""
Uses Groq to extract job requirements from the job description.
"""
prompt = f"""
The following is a job description:
{job_description}
Extract the list of job requirements, qualifications, and skills from the job description. Provide them as a numbered list.
Requirements:
"""
try:
response = llm.invoke(prompt)
requirements = response.content.strip()
return requirements
except Exception as e:
st.error(f"Error extracting requirements: {e}")
return ""
@st.cache_data(ttl=3600)
def generate_email(job_description, requirements, resume_text):
"""
Generates a personalized cold email using Groq based on the job description, requirements, and resume.
"""
prompt = f"""
You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Craft a concise and professional cold email to a potential employer based on the following information:
**Job Description:**
{job_description}
**Extracted Requirements:**
{requirements}
**Your Resume:**
{resume_text}
**Email Requirements:**
- **Introduction:** Briefly introduce yourself and mention the specific job you are applying for.
- **Body:** Highlight your relevant skills, projects, internships, and leadership experiences that align with the job requirements.
- **Value Proposition:** Explain how your fresh perspective and recent academic knowledge can add value to the company.
- **Closing:** Express enthusiasm for the opportunity, mention your willingness for an interview, and thank the recipient for their time.
"""
try:
response = llm.invoke(prompt)
email_text = response.content.strip()
return email_text
except Exception as e:
st.error(f"Error generating email: {e}")
return ""
@st.cache_data(ttl=3600)
def generate_cover_letter(job_description, requirements, resume_text):
"""
Generates a personalized cover letter using Groq based on the job description, requirements, and resume.
"""
prompt = f"""
You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Compose a personalized and professional cover letter based on the following information:
**Job Description:**
{job_description}
**Extracted Requirements:**
{requirements}
**Your Resume:**
{resume_text}
**Cover Letter Requirements:**
1. **Greeting:** Address the hiring manager by name if available; otherwise, use a generic greeting such as "Dear Hiring Manager."
2. **Introduction:** Begin with an engaging opening that mentions the specific position you are applying for and conveys your enthusiasm.
3. **Body:**
- **Skills and Experiences:** Highlight relevant technical skills, projects, internships, and leadership roles that align with the job requirements.
- **Alignment:** Demonstrate how your academic background and hands-on experiences make you a suitable candidate for the role.
4. **Value Proposition:** Explain how your fresh perspective, recent academic knowledge, and eagerness to learn can contribute to the company's success.
5. **Conclusion:** End with a strong closing statement expressing your interest in an interview, your availability, and gratitude for the hiring manager’s time and consideration.
6. **Professional Tone:** Maintain a respectful and professional tone throughout the letter.
"""
try:
response = llm.invoke(prompt)
cover_letter = response.content.strip()
return cover_letter
except Exception as e:
st.error(f"Error generating cover letter: {e}")
return ""
@st.cache_data(ttl=3600)
def extract_skills(text):
"""
Extracts a list of skills from the resume text using Groq.
"""
prompt = f"""
Extract a comprehensive list of technical and soft skills from the following resume text. Provide the skills as a comma-separated list.
Resume Text:
{text}
Skills:
"""
try:
response = llm.invoke(prompt)
skills = response.content.strip()
# Clean and split the skills
skills_list = [skill.strip() for skill in re.split(',|\n', skills) if skill.strip()]
return skills_list
except Exception as e:
st.error(f"Error extracting skills: {e}")
return []
@st.cache_data(ttl=3600)
def suggest_keywords(resume_text, job_description=None):
"""
Suggests additional relevant keywords to enhance resume compatibility with ATS.
"""
prompt = f"""
Analyze the following resume text and suggest additional relevant keywords that can enhance its compatibility with Applicant Tracking Systems (ATS). If a job description is provided, tailor the keywords to align with the job requirements.
Resume Text:
{resume_text}
Job Description:
{job_description if job_description else "N/A"}
Suggested Keywords:
"""
try:
response = llm.invoke(prompt)
keywords = response.content.strip()
keywords_list = [keyword.strip() for keyword in re.split(',|\n', keywords) if keyword.strip()]
return keywords_list
except Exception as e:
st.error(f"Error suggesting keywords: {e}")
return []
def create_skill_distribution_chart(skills):
"""
Creates a bar chart showing the distribution of skills.
"""
skill_counts = {}
for skill in skills:
skill_counts[skill] = skill_counts.get(skill, 0) + 1
df = pd.DataFrame(list(skill_counts.items()), columns=['Skill', 'Count'])
fig = px.bar(df, x='Skill', y='Count', title='Skill Distribution')
return fig
def create_experience_timeline(resume_text):
"""
Creates an experience timeline from the resume text.
"""
# Extract work experience details using Groq
prompt = f"""
From the following resume text, extract the job titles, companies, and durations of employment. Provide the information in a table format with columns: Job Title, Company, Duration (in years).
Resume Text:
{resume_text}
Table:
"""
try:
response = llm.invoke(prompt)
table_text = response.content.strip()
# Parse the table_text to create a DataFrame
data = []
for line in table_text.split('\n'):
if line.strip() and not line.lower().startswith("job title"):
parts = line.split('|')
if len(parts) == 3:
job_title = parts[0].strip()
company = parts[1].strip()
duration = parts[2].strip()
# Convert duration to a float representing years
duration_years = parse_duration(duration)
data.append({"Job Title": job_title, "Company": company, "Duration (years)": duration_years})
df = pd.DataFrame(data)
if not df.empty:
# Create a cumulative duration for timeline
df['Start Year'] = df['Duration (years)'].cumsum() - df['Duration (years)']
df['End Year'] = df['Duration (years)'].cumsum()
fig = px.timeline(df, x_start="Start Year", x_end="End Year", y="Job Title", color="Company", title="Experience Timeline")
fig.update_yaxes(categoryorder="total ascending")
return fig
else:
return None
except Exception as e:
st.error(f"Error creating experience timeline: {e}")
return None
def parse_duration(duration_str):
"""
Parses duration strings like '2 years' or '6 months' into float years.
"""
try:
if 'year' in duration_str.lower():
years = float(re.findall(r'\d+\.?\d*', duration_str)[0])
return years
elif 'month' in duration_str.lower():
months = float(re.findall(r'\d+\.?\d*', duration_str)[0])
return months / 12
else:
return 0
except:
return 0
# -------------------------------
# API Integration Functions
# -------------------------------
# Remotive API Integration
@st.cache_data(ttl=86400) # Cache results for 1 day
def fetch_remotive_jobs_api(job_title, location=None, category=None, remote=True, max_results=50):
"""
Fetches job listings from Remotive API based on user preferences.
Args:
job_title (str): The job title to search for.
location (str, optional): The job location. Defaults to None.
category (str, optional): The job category. Defaults to None.
remote (bool, optional): Whether to fetch remote jobs. Defaults to True.
max_results (int, optional): Maximum number of jobs to fetch. Defaults to 50.
Returns:
list: A list of job dictionaries.
"""
base_url = "https://remotive.com/api/remote-jobs"
params = {
"search": job_title,
"limit": max_results
}
if category:
params["category"] = category
try:
response = requests.get(base_url, params=params)
response.raise_for_status()
jobs = response.json().get("jobs", [])
if remote:
# Filter for remote jobs if not already
jobs = [job for job in jobs if job.get("candidate_required_location") == "Worldwide" or job.get("remote") == True]
return jobs
except requests.exceptions.RequestException as e:
st.error(f"Error fetching jobs from Remotive: {e}")
return []
# The Muse API Integration
@st.cache_data(ttl=86400) # Cache results for 1 day
def fetch_muse_jobs_api(job_title, location=None, category=None, max_results=50):
"""
Fetches job listings from The Muse API based on user preferences.
Args:
job_title (str): The job title to search for.
location (str, optional): The job location. Defaults to None.
category (str, optional): The job category. Defaults to None.
max_results (int, optional): Maximum number of jobs to fetch. Defaults to 50.
Returns:
list: A list of job dictionaries.
"""
base_url = "https://www.themuse.com/api/public/jobs"
headers = {
"Content-Type": "application/json"
}
params = {
"page": 1,
"per_page": max_results,
"category": category,
"location": location,
"company": None # Can be extended based on needs
}
try:
response = requests.get(base_url, params=params, headers=headers)
response.raise_for_status()
jobs = response.json().get("results", [])
# Filter based on job title
filtered_jobs = [job for job in jobs if job_title.lower() in job.get("name", "").lower()]
return filtered_jobs
except requests.exceptions.RequestException as e:
st.error(f"Error fetching jobs from The Muse: {e}")
return []
# Indeed API Integration using /list and /get
@st.cache_data(ttl=86400) # Cache results for 1 day
def fetch_indeed_jobs_list_api(job_title, location="United States", distance="1.0", language="en_GB", remoteOnly="false", datePosted="month", employmentTypes="fulltime;parttime;intern;contractor", index=0, page_size=10):
"""
Fetches a list of job IDs from Indeed API based on user preferences.
Args:
job_title (str): The job title to search for.
location (str, optional): The job location. Defaults to "United States".
distance (str, optional): Search radius in miles. Defaults to "1.0".
language (str, optional): Language code. Defaults to "en_GB".
remoteOnly (str, optional): "true" or "false". Defaults to "false".
datePosted (str, optional): e.g., "month". Defaults to "month".
employmentTypes (str, optional): e.g., "fulltime;parttime;intern;contractor". Defaults to "fulltime;parttime;intern;contractor".
index (int, optional): Pagination index. Defaults to 0.
page_size (int, optional): Number of jobs to fetch. Defaults to 10.
Returns:
list: A list of job IDs.
"""
url = "https://jobs-api14.p.rapidapi.com/list"
querystring = {
"query": job_title,
"location": location,
"distance": distance,
"language": language,
"remoteOnly": remoteOnly,
"datePosted": datePosted,
"employmentTypes": employmentTypes,
"index": str(index),
"page_size": str(page_size)
}
headers = {
"x-rapidapi-key": RAPIDAPI_KEY,
"x-rapidapi-host": "jobs-api14.p.rapidapi.com"
}
try:
response = requests.get(url, headers=headers, params=querystring)
response.raise_for_status()
data = response.json()
job_ids = [job["id"] for job in data.get("jobs", [])]
return job_ids
except requests.exceptions.HTTPError as http_err:
if response.status_code == 400:
st.error("❌ Bad Request: Please check the parameters you're sending.")
elif response.status_code == 403:
st.error("❌ Access Forbidden: Check your API key and permissions.")
elif response.status_code == 404:
st.error("❌ Resource Not Found: Verify the endpoint and parameters.")
else:
st.error(f"❌ HTTP error occurred: {http_err}")
return []
except requests.exceptions.RequestException as req_err:
st.error(f"❌ Request Exception: {req_err}")
return []
except Exception as e:
st.error(f"❌ An unexpected error occurred: {e}")
return []
@st.cache_data(ttl=86400) # Cache results for 1 day
def fetch_indeed_job_details_api(job_id, language="en_GB"):
"""
Fetches job details from Indeed API based on job ID.
Args:
job_id (str): The job ID.
language (str, optional): Language code. Defaults to "en_GB".
Returns:
dict: Job details.
"""
url = "https://jobs-api14.p.rapidapi.com/get"
querystring = {
"id": job_id,
"language": language
}
headers = {
"x-rapidapi-key": RAPIDAPI_KEY,
"x-rapidapi-host": "jobs-api14.p.rapidapi.com"
}
try:
response = requests.get(url, headers=headers, params=querystring)
response.raise_for_status()
job_details = response.json()
return job_details
except requests.exceptions.HTTPError as http_err:
if response.status_code == 400:
st.error("❌ Bad Request: Please check the job ID and parameters.")
elif response.status_code == 403:
st.error("❌ Access Forbidden: Check your API key and permissions.")
elif response.status_code == 404:
st.error("❌ Job Not Found: Verify the job ID.")
else:
st.error(f"❌ HTTP error occurred: {http_err}")
return {}
except requests.exceptions.RequestException as req_err:
st.error(f"❌ Request Exception: {req_err}")
return {}
except Exception as e:
st.error(f"❌ An unexpected error occurred: {e}")
return {}
def recommend_indeed_jobs(user_skills, user_preferences):
"""
Recommends jobs from Indeed API based on user skills and preferences.
Args:
user_skills (list): List of user's skills.
user_preferences (dict): User preferences like job title, location, category.
Returns:
list: Recommended job listings.
"""
job_title = user_preferences.get("job_title", "")
location = user_preferences.get("location", "United States")
category = user_preferences.get("category", "")
language = "en_GB"
# Fetch job IDs
job_ids = fetch_indeed_jobs_list_api(job_title, location=location, category=category, page_size=5) # Limiting to 5 for API call count
recommended_jobs = []
api_calls_needed = len(job_ids) # Each /get call counts as one
# Check if enough API calls are left
if not can_make_api_calls(api_calls_needed):
st.error("❌ You have reached your monthly API request limit. Please try again next month.")
return []
for job_id in job_ids:
job_details = fetch_indeed_job_details_api(job_id, language=language)
if job_details and not job_details.get("hasError", True):
job_description = job_details.get("description", "").lower()
match_score = sum(skill.lower() in job_description for skill in user_skills)
if match_score > 0:
recommended_jobs.append((match_score, job_details))
decrement_api_calls(1)
# Sort jobs based on match_score
recommended_jobs.sort(reverse=True, key=lambda x: x[0])
# Return only the job dictionaries
return [job for score, job in recommended_jobs[:10]] # Top 10 recommendations
def recommend_jobs(user_skills, user_preferences):
"""
Recommends jobs based on user skills and preferences from Remotive, The Muse, and Indeed APIs.
Args:
user_skills (list): List of user's skills.
user_preferences (dict): User preferences like job title, location, category.
Returns:
list: Recommended job listings.
"""
# Fetch from Remotive
remotive_jobs = fetch_remotive_jobs_api(user_preferences.get("job_title", ""), user_preferences.get("location"), user_preferences.get("category"))
# Fetch from The Muse
muse_jobs = fetch_muse_jobs_api(user_preferences.get("job_title", ""), user_preferences.get("location"), user_preferences.get("category"))
# Fetch from Indeed
indeed_jobs = recommend_indeed_jobs(user_skills, user_preferences)
# Combine all job listings
combined_jobs = remotive_jobs + muse_jobs + indeed_jobs
# Remove duplicates based on job URL
unique_jobs = {}
for job in combined_jobs:
url = job.get("url") or job.get("redirect_url") or job.get("url_standard")
if url and url not in unique_jobs:
unique_jobs[url] = job
return list(unique_jobs.values())
# -------------------------------
# BLS API Integration and Display
# -------------------------------
@st.cache_data(ttl=86400) # Cache results for 1 day
def fetch_bls_data(series_ids, start_year=2020, end_year=datetime.now().year):
"""
Fetches labor market data from the BLS API.
Args:
series_ids (list): List of BLS series IDs.
start_year (int, optional): Start year for data. Defaults to 2020.
end_year (int, optional): End year for data. Defaults to current year.
Returns:
dict: BLS data response.
"""
bls_url = "https://api.bls.gov/publicAPI/v2/timeseries/data/"
headers = {
"Content-Type": "application/json"
}
payload = {
"seriesid": series_ids,
"startyear": str(start_year),
"endyear": str(end_year)
}
try:
response = requests.post(bls_url, json=payload, headers=headers)
response.raise_for_status()
data = response.json()
if data.get("status") == "REQUEST_SUCCEEDED":
return data.get("Results", {})
else:
st.error("BLS API request failed.")
return {}
except requests.exceptions.RequestException as e:
st.error(f"Error fetching data from BLS: {e}")
return {}
def display_bls_data(series_id, title):
"""
Processes and displays BLS data with visualizations.
Args:
series_id (str): BLS series ID.
title (str): Title for the visualization.
"""
data = fetch_bls_data([series_id])
if not data:
st.info("No data available.")
return
series_data = data.get("series", [])[0]
series_title = series_data.get("title", title)
observations = series_data.get("data", [])
# Extract year and value
years = [int(obs["year"]) for obs in observations]
values = [float(obs["value"].replace(',', '')) for obs in observations]
df = pd.DataFrame({
"Year": years,
"Value": values
}).sort_values("Year")
st.markdown(f"### {series_title}")
fig = px.line(df, x="Year", y="Value", title=series_title, markers=True)
st.plotly_chart(fig, use_container_width=True)
# -------------------------------
# API Usage Counter Functions
# -------------------------------
def init_api_usage_db():
"""
Initializes the SQLite database and creates the api_usage table if it doesn't exist.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS api_usage (
id INTEGER PRIMARY KEY AUTOINCREMENT,
count INTEGER,
last_reset DATE
)
''')
# Check if a row exists, if not, initialize
c.execute('SELECT COUNT(*) FROM api_usage')
if c.fetchone()[0] == 0:
# Initialize with 25 requests and current date
c.execute('INSERT INTO api_usage (count, last_reset) VALUES (?, ?)', (25, datetime.now().date()))
conn.commit()
conn.close()
def get_api_usage():
"""
Retrieves the current API usage count and last reset date.
Returns:
tuple: (count, last_reset_date)
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('SELECT count, last_reset FROM api_usage WHERE id = 1')
row = c.fetchone()
conn.close()
if row:
return row[0], datetime.strptime(row[1], "%Y-%m-%d").date()
else:
return 25, datetime.now().date()
def reset_api_usage():
"""
Resets the API usage count to 25 and updates the last reset date.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('UPDATE api_usage SET count = ?, last_reset = ? WHERE id = 1', (25, datetime.now().date()))
conn.commit()
conn.close()
def can_make_api_calls(requests_needed):
"""
Checks if there are enough API calls remaining.
Args:
requests_needed (int): Number of API calls required.
Returns:
bool: True if allowed, False otherwise.
"""
count, last_reset = get_api_usage()
today = datetime.now().date()
if today >= last_reset + timedelta(days=30):
reset_api_usage()
count, last_reset = get_api_usage()
if count >= requests_needed:
return True
else:
return False
def decrement_api_calls(requests_used):
"""
Decrements the API usage count by the number of requests used.
Args:
requests_used (int): Number of API calls used.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('SELECT count FROM api_usage WHERE id = 1')
row = c.fetchone()
if row:
new_count = row[0] - requests_used
if new_count < 0:
new_count = 0
c.execute('UPDATE api_usage SET count = ? WHERE id = 1', (new_count,))
conn.commit()
conn.close()
# -------------------------------
# Application Tracking Database Functions
# -------------------------------
def init_db():
"""
Initializes the SQLite database and creates the applications table if it doesn't exist.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS applications (
id INTEGER PRIMARY KEY AUTOINCREMENT,
job_title TEXT,
company TEXT,
application_date TEXT,
status TEXT,
deadline TEXT,
notes TEXT,
job_description TEXT,
resume_text TEXT,
skills TEXT
)
''')
conn.commit()
conn.close()
def add_application(job_title, company, application_date, status, deadline, notes, job_description, resume_text, skills):
"""
Adds a new job application to the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
INSERT INTO applications (job_title, company, application_date, status, deadline, notes, job_description, resume_text, skills)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (job_title, company, application_date, status, deadline, notes, job_description, resume_text, ', '.join(skills)))
conn.commit()
conn.close()
def fetch_applications():
"""
Fetches all applications from the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('SELECT * FROM applications')
data = c.fetchall()
conn.close()
applications = []
for app in data:
applications.append({
"ID": app[0],
"Job Title": app[1],
"Company": app[2],
"Application Date": app[3],
"Status": app[4],
"Deadline": app[5],
"Notes": app[6],
"Job Description": app[7],
"Resume Text": app[8],
"Skills": app[9].split(', ') if app[9] else []
})
return applications
def update_application_status(app_id, new_status):
"""
Updates the status of an application.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('UPDATE applications SET status = ? WHERE id = ?', (new_status, app_id))
conn.commit()
conn.close()
def delete_application(app_id):
"""
Deletes an application from the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('DELETE FROM applications WHERE id = ?', (app_id,))
conn.commit()
conn.close()
# -------------------------------
# Learning Path Generation Function
# -------------------------------
@st.cache_data(ttl=86400) # Cache results for 1 day
def generate_learning_path(career_goal, current_skills):
"""
Generates a personalized learning path using Groq based on career goal and current skills.
"""
prompt = f"""
Based on the following career goal and current skills, create a personalized learning path that includes recommended courses, projects, and milestones to achieve the career goal.
**Career Goal:**
{career_goal}
**Current Skills:**
{current_skills}
**Learning Path:**
"""
try:
response = llm.invoke(prompt)
learning_path = response.content.strip()
return learning_path
except Exception as e:
st.error(f"Error generating learning path: {e}")
return ""
# -------------------------------
# YouTube Video Search and Embed Functions
# -------------------------------
@st.cache_data(ttl=86400) # Cache results for 1 day
def search_youtube_videos(query, max_results=2, video_duration="long"):
"""
Searches YouTube for videos matching the query and returns video URLs.
Args:
query (str): Search query.
max_results (int, optional): Number of videos to return. Defaults to 2.
video_duration (str, optional): Duration filter ('any', 'short', 'medium', 'long'). Defaults to "long".
Returns:
list: List of YouTube video URLs.
"""
search_url = "https://www.googleapis.com/youtube/v3/search"
params = {
"part": "snippet",
"q": query,
"type": "video",
"maxResults": max_results,
"videoDuration": video_duration,
"key": YOUTUBE_API_KEY
}
try:
response = requests.get(search_url, params=params)
response.raise_for_status()
results = response.json().get("items", [])
video_urls = [f"https://www.youtube.com/watch?v={item['id']['videoId']}" for item in results]
return video_urls
except requests.exceptions.RequestException as e:
st.error(f"❌ Error fetching YouTube videos: {e}")
return []
def embed_youtube_videos(video_urls, module_name):
"""
Embeds YouTube videos in the Streamlit app.
Args:
video_urls (list): List of YouTube video URLs.
module_name (str): Name of the module for context.
"""
for url in video_urls:
st.video(url)
# -------------------------------
# Job Recommendations and BLS Integration
# -------------------------------
def labor_market_insights_module():
st.header("📈 Labor Market Insights")
st.write("""
Gain valuable insights into the current labor market trends, employment rates, and industry growth to make informed career decisions.
""")
# Define BLS Series IDs based on desired data
# Example: Unemployment rate (Series ID: LNS14000000)
# Reference: https://www.bls.gov/web/laus/laumstrk.htm
unemployment_series_id = "LNS14000000" # Unemployment Rate
employment_series_id = "CEU0000000001" # Total Employment
# Display Unemployment Rate
display_bls_data(unemployment_series_id, "Unemployment Rate (%)")
# Display Total Employment
display_bls_data(employment_series_id, "Total Employment")
# Additional Insights
st.subheader("💡 Additional Insights")
st.write("""
- **Industry Growth:** Understanding which industries are growing can help you target your job search effectively.
- **Salary Trends:** Keeping an eye on salary trends ensures that you negotiate effectively and align your expectations.
- **Geographical Demand:** Some regions may have higher demand for certain roles, guiding your location preferences.
""")
# -------------------------------
# Page Functions
# -------------------------------
def email_generator_page():
st.header("📧 Automated Email Generator")
st.write("""
Generate personalized cold emails based on job postings and your resume.
""")
# Create two columns for input fields
col1, col2 = st.columns(2)
with col1:
job_link = st.text_input("🔗 Enter the job link:")
with col2:
uploaded_file = st.file_uploader("📄 Upload your resume (PDF format):", type="pdf")
if st.button("Generate Email"):
if not job_link:
st.error("Please enter a job link.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Processing..."):
# Extract job description
job_description = extract_job_description(job_link)
if not job_description:
st.error("Failed to extract job description.")
return
# Extract requirements
requirements = extract_requirements(job_description)
if not requirements:
st.error("Failed to extract requirements.")
return
# Extract resume text
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
# Generate email
email_text = generate_email(job_description, requirements, resume_text)
if email_text:
st.subheader("📨 Generated Email:")
st.write(email_text)
# Provide download option
st.download_button(
label="Download Email",
data=email_text,
file_name="generated_email.txt",
mime="text/plain"
)
else:
st.error("Failed to generate email.")
def cover_letter_generator_page():
st.header("📝 Automated Cover Letter Generator")
st.write("""
Generate personalized cover letters based on job postings and your resume.
""")
# Create two columns for input fields
col1, col2 = st.columns(2)
with col1:
job_link = st.text_input("🔗 Enter the job link:")
with col2:
uploaded_file = st.file_uploader("📄 Upload your resume (PDF format):", type="pdf")
if st.button("Generate Cover Letter"):
if not job_link:
st.error("Please enter a job link.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Processing..."):
# Extract job description
job_description = extract_job_description(job_link)
if not job_description:
st.error("Failed to extract job description.")
return
# Extract requirements
requirements = extract_requirements(job_description)
if not requirements:
st.error("Failed to extract requirements.")
return
# Extract resume text
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
# Generate cover letter
cover_letter = generate_cover_letter(job_description, requirements, resume_text)
if cover_letter:
st.subheader("📝 Generated Cover Letter:")
st.write(cover_letter)
# Provide download option
st.download_button(
label="Download Cover Letter",
data=cover_letter,
file_name="generated_cover_letter.txt",
mime="text/plain"
)
else:
st.error("Failed to generate cover letter.")
def resume_analysis_page():
st.header("📄 Resume Analysis and Optimization")
st.write("""
Enhance your resume's effectiveness with our comprehensive analysis tools. Upload your resume to extract key information, receive optimization suggestions, and visualize your skills and experience.
""")
uploaded_file = st.file_uploader("📂 Upload your resume (PDF format):", type="pdf")
if uploaded_file:
resume_text = extract_text_from_pdf(uploaded_file)
if resume_text:
st.success("✅ Resume uploaded successfully!")
# Extracted Information
st.subheader("🔍 Extracted Information")
# Create tabs for organized sections
tabs = st.tabs(["💼 Skills", "🔑 Suggested Keywords"])
with tabs[0]:
skills = extract_skills(resume_text)
if skills:
st.markdown("**Identified Skills:**")
# Display skills as bullet points in columns
cols = st.columns(4)
for idx, skill in enumerate(skills, 1):
cols[idx % 4].write(f"- {skill}")
else:
st.info("No skills extracted.")
with tabs[1]:
keywords = suggest_keywords(resume_text)
if keywords:
st.markdown("**Suggested Keywords for ATS Optimization:**")
# Display keywords as bullet points in columns
cols = st.columns(4)
for idx, keyword in enumerate(keywords, 1):
cols[idx % 4].write(f"- {keyword}")
else:
st.info("No keywords suggested.")
# Optimization Suggestions
st.subheader("🛠️ Optimization Suggestions")
if keywords:
st.markdown("""
- **Keyword Optimization:** Incorporate the suggested keywords to improve ATS compatibility.
- **Enhance Relevant Sections:** Highlight skills and experiences that align closely with job descriptions.
""")
else:
st.markdown("- **Keyword Optimization:** No keywords suggested.")
st.markdown("""
- **Formatting:** Ensure consistent formatting for headings, bullet points, and text alignment to enhance readability.
- **Quantify Achievements:** Where possible, quantify your accomplishments to demonstrate impact.
- **Tailor Your Resume:** Customize your resume for each job application to emphasize relevant experiences.
""")
# Visual Resume Analytics
st.subheader("📊 Visual Resume Analytics")
# Create two columns for charts
viz_col1, viz_col2 = st.columns(2)
with viz_col1:
if skills:
st.markdown("**Skill Distribution:**")
fig_skills = create_skill_distribution_chart(skills)
st.plotly_chart(fig_skills, use_container_width=True)
else:
st.info("No skills to display.")
with viz_col2:
fig_experience = create_experience_timeline(resume_text)
if fig_experience:
st.markdown("**Experience Timeline:**")
st.plotly_chart(fig_experience, use_container_width=True)
else:
st.info("Not enough data to generate an experience timeline.")
# Save the resume and analysis to the database
st.subheader("💾 Save Resume Analysis")
if st.button("Save Resume Analysis"):
add_application(
job_title="N/A",
company="N/A",
application_date=datetime.now().strftime("%Y-%m-%d"),
status="N/A",
deadline="N/A",
notes="Resume Analysis",
job_description="N/A",
resume_text=resume_text,
skills=skills
)
st.success("✅ Resume analysis saved successfully!")
else:
st.error("❌ Failed to extract text from resume.")
def application_tracking_dashboard():
st.header("📋 Application Tracking Dashboard")
# Initialize database
init_db()
init_api_usage_db()
# Form to add a new application
st.subheader("➕ Add New Application")
with st.form("add_application"):
job_title = st.text_input("🖇️ Job Title")
company = st.text_input("🏢 Company")
application_date = st.date_input("📅 Application Date", datetime.today())
status = st.selectbox("📈 Status", ["Applied", "Interviewing", "Offered", "Rejected"])
deadline = st.date_input("⏰ Application Deadline", datetime.today() + timedelta(days=30))
notes = st.text_area("📝 Notes")
uploaded_file = st.file_uploader("📂 Upload Job Description (PDF)", type="pdf")
uploaded_resume = st.file_uploader("📄 Upload Resume (PDF)", type="pdf")
submitted = st.form_submit_button("➕ Add Application")
if submitted:
if uploaded_file:
job_description = extract_text_from_pdf(uploaded_file)
else:
job_description = ""
if uploaded_resume:
resume_text = extract_text_from_pdf(uploaded_resume)
skills = extract_skills(resume_text)
else:
resume_text = ""
skills = []
add_application(
job_title=job_title,
company=company,
application_date=application_date.strftime("%Y-%m-%d"),
status=status,
deadline=deadline.strftime("%Y-%m-%d"),
notes=notes,
job_description=job_description,
resume_text=resume_text,
skills=skills
)
st.success("✅ Application added successfully!")
# Display applications
st.subheader("📊 Your Applications")
applications = fetch_applications()
if applications:
df = pd.DataFrame(applications)
df = df.drop(columns=["Job Description", "Resume Text", "Skills"])
st.dataframe(df)
# Export Button
csv = df.to_csv(index=False).encode('utf-8')
st.download_button(
label="💾 Download Applications as CSV",
data=csv,
file_name='applications.csv',
mime='text/csv',
)
# Import Button
st.subheader("📥 Import Applications")
uploaded_csv = st.file_uploader("📁 Upload a CSV file", type="csv")
if uploaded_csv:
try:
imported_df = pd.read_csv(uploaded_csv)
# Validate required columns
required_columns = {"Job Title", "Company", "Application Date", "Status", "Deadline", "Notes"}
if not required_columns.issubset(imported_df.columns):
st.error("❌ Uploaded CSV is missing required columns.")
else:
for index, row in imported_df.iterrows():
job_title = row.get("Job Title", "N/A")
company = row.get("Company", "N/A")
application_date = row.get("Application Date", datetime.now().strftime("%Y-%m-%d"))
status = row.get("Status", "Applied")
deadline = row.get("Deadline", "")
notes = row.get("Notes", "")
job_description = row.get("Job Description", "")
resume_text = row.get("Resume Text", "")
skills = row.get("Skills", "").split(', ') if row.get("Skills") else []
add_application(
job_title=job_title,
company=company,
application_date=application_date,
status=status,
deadline=deadline,
notes=notes,
job_description=job_description,
resume_text=resume_text,
skills=skills
)
st.success("✅ Applications imported successfully!")
except Exception as e:
st.error(f"❌ Error importing applications: {e}")
# Actions: Update Status or Delete
for app in applications:
with st.expander(f"{app['Job Title']} at {app['Company']}"):
st.write(f"**📅 Application Date:** {app['Application Date']}")
st.write(f"**⏰ Deadline:** {app['Deadline']}")
st.write(f"**📈 Status:** {app['Status']}")
st.write(f"**📝 Notes:** {app['Notes']}")
if app['Job Description']:
st.write("**📄 Job Description:**")
st.write(app['Job Description'][:500] + "...")
if app['Skills']:
st.write("**💼 Skills:**", ', '.join(app['Skills']))
# Update status
new_status = st.selectbox("🔄 Update Status:", ["Applied", "Interviewing", "Offered", "Rejected"], key=f"status_{app['ID']}")
if st.button("🔁 Update Status", key=f"update_{app['ID']}"):
update_application_status(app['ID'], new_status)
st.success("✅ Status updated successfully!")
# Delete application
if st.button("🗑️ Delete Application", key=f"delete_{app['ID']}"):
delete_application(app['ID'])
st.success("✅ Application deleted successfully!")
else:
st.write("ℹ️ No applications found.")
def job_recommendations_module():
st.header("🔍 Job Matching & Recommendations")
st.write("""
Discover job opportunities tailored to your skills and preferences. Get personalized recommendations from multiple job platforms.
""")
# User Preferences Form
st.subheader("🎯 Set Your Preferences")
with st.form("preferences_form"):
job_title = st.text_input("🔍 Desired Job Title", placeholder="e.g., Data Scientist, Backend Developer")
location = st.text_input("📍 Preferred Location", placeholder="e.g., New York, NY, USA or Remote")
category = st.selectbox("📂 Job Category", ["", "Engineering", "Marketing", "Design", "Sales", "Finance", "Healthcare", "Education", "Other"])
user_skills_input = st.text_input("💡 Your Skills (comma-separated)", placeholder="e.g., Python, Machine Learning, SQL")
submitted = st.form_submit_button("🚀 Get Recommendations")
if submitted:
if not job_title or not user_skills_input:
st.error("❌ Please enter both job title and your skills.")
return
user_skills = [skill.strip() for skill in user_skills_input.split(",") if skill.strip()]
user_preferences = {
"job_title": job_title,
"location": location,
"category": category
}
with st.spinner("🔄 Fetching job recommendations..."):
# Fetch recommendations from all APIs (Remotive, The Muse, Indeed)
recommended_jobs = recommend_jobs(user_skills, user_preferences)
if recommended_jobs:
st.subheader("💼 Recommended Jobs:")
for idx, job in enumerate(recommended_jobs, 1):
# Depending on the API, job data structure might differ
job_title_display = job.get("title") or job.get("name") or job.get("jobTitle")
company_display = job.get("company", {}).get("name") or job.get("company_name") or job.get("employer", {}).get("name")
location_display = job.get("candidate_required_location") or job.get("location") or job.get("country")
salary_display = "N/A" # Salary is removed
job_url = job.get("url") or job.get("redirect_url") or job.get("url_standard")
st.markdown(f"### {idx}. {job_title_display}")
st.markdown(f"**🏢 Company:** {company_display}")
st.markdown(f"**📍 Location:** {location_display}")
st.markdown(f"**🔗 Job URL:** [Apply Here]({job_url})")
st.write("---")
else:
st.info("ℹ️ No job recommendations found based on your criteria.")
def interview_preparation_module():
st.header("🎤 Interview Preparation")
st.write("""
Prepare for your interviews with tailored mock questions and expert answers.
""")
# Create two columns for input fields
col1, col2 = st.columns(2)
with col1:
job_title = st.text_input("🔍 Enter the job title you're applying for:")
with col2:
company = st.text_input("🏢 Enter the company name:")
if st.button("🎯 Generate Mock Interview Questions"):
if not job_title or not company:
st.error("❌ Please enter both job title and company name.")
return
with st.spinner("⏳ Generating questions..."):
# Prompt to generate 50 interview questions with answers
prompt = f"""
Generate a list of 50 interview questions along with their answers for the position of {job_title} at {company}. Each question should be followed by a concise and professional answer.
"""
try:
# Invoke the LLM to get questions and answers
qa_text = llm.invoke(prompt).content.strip()
# Split into question-answer pairs
qa_pairs = qa_text.split('\n\n')
st.subheader("🗣️ Mock Interview Questions and Answers:")
for idx, qa in enumerate(qa_pairs, 1):
if qa.strip():
parts = qa.split('\n', 1)
if len(parts) == 2:
question = parts[0].strip()
answer = parts[1].strip()
st.markdown(f"**Q{idx}: {question}**")
st.markdown(f"**A:** {answer}")
st.write("---")
except Exception as e:
st.error(f"❌ Error generating interview questions: {e}")
def personalized_learning_paths_module():
st.header("📚 Personalized Learning Paths")
st.write("""
Receive tailored learning plans to help you acquire the skills needed for your desired career, complemented with curated video resources.
""")
# Create two columns for input fields
col1, col2 = st.columns(2)
with col1:
career_goal = st.text_input("🎯 Enter your career goal (e.g., Data Scientist, Machine Learning Engineer):")
with col2:
current_skills = st.text_input("💡 Enter your current skills (comma-separated):")
if st.button("🚀 Generate Learning Path"):
if not career_goal or not current_skills:
st.error("❌ Please enter both career goal and current skills.")
return
with st.spinner("🔄 Generating your personalized learning path..."):
learning_path = generate_learning_path(career_goal, current_skills)
if learning_path:
st.subheader("📜 Your Personalized Learning Path:")
st.write(learning_path)
# Assuming the learning path is divided into modules/subparts separated by newlines or numbering
# We'll extract subparts and embed YouTube videos for each
# Example format:
# 1. Module One
# 2. Module Two
# etc.
# Split learning path into modules
modules = re.split(r'\d+\.\s+', learning_path)
modules = [module.strip() for module in modules if module.strip()]
st.subheader("📹 Recommended YouTube Videos for Each Module:")
for module in modules:
# Search for long videos related to the module
video_urls = search_youtube_videos(query=module, max_results=2, video_duration="long")
if video_urls:
st.markdown(f"### {module}")
embed_youtube_videos(video_urls, module)
else:
st.write(f"No videos found for **{module}**.")
else:
st.error("❌ Failed to generate learning path.")
def networking_opportunities_module():
st.header("🤝 Networking Opportunities")
st.write("""
Expand your professional network by connecting with relevant industry peers and joining professional groups.
""")
# Create two columns for input fields
col1, col2 = st.columns(2)
with col1:
user_skills = st.text_input("💡 Enter your key skills (comma-separated):")
with col2:
industry = st.text_input("🏭 Enter your industry (e.g., Technology, Finance):")
if st.button("🔍 Find Networking Opportunities"):
if not user_skills or not industry:
st.error("❌ Please enter both key skills and industry.")
return
with st.spinner("🔄 Fetching networking opportunities..."):
# Suggest LinkedIn groups or connections based on skills and industry
prompt = f"""
Based on the following skills: {user_skills}, and industry: {industry}, suggest relevant LinkedIn groups, professional organizations, and industry events for networking.
"""
try:
suggestions = llm.invoke(prompt).content.strip()
st.subheader("🔗 Recommended Networking Groups and Events:")
st.write(suggestions)
except Exception as e:
st.error(f"❌ Error fetching networking opportunities: {e}")
def feedback_and_improvement_module():
st.header("🗣️ Feedback and Continuous Improvement")
st.write("""
We value your feedback! Let us know how we can improve your experience.
""")
with st.form("feedback_form"):
name = st.text_input("👤 Your Name")
email = st.text_input("📧 Your Email")
feedback_type = st.selectbox("📂 Type of Feedback", ["Bug Report", "Feature Request", "General Feedback"])
feedback = st.text_area("📝 Your Feedback")
submitted = st.form_submit_button("✅ Submit")
if submitted:
if not name or not email or not feedback:
st.error("❌ Please fill in all the fields.")
else:
# Here you can implement logic to store feedback, e.g., in a database or send via email
# For demonstration, we'll print to the console
print(f"Feedback from {name} ({email}): {feedback_type} - {feedback}")
st.success("✅ Thank you for your feedback!")
def gamification_module():
st.header("🏆 Gamification and Achievements")
st.write("""
Stay motivated by earning badges and tracking your progress!
""")
# Initialize database
init_db()
# Example achievements
applications = fetch_applications()
num_apps = len(applications)
achievements = {
"First Application": num_apps >= 1,
"5 Applications": num_apps >= 5,
"10 Applications": num_apps >= 10,
"Resume Optimized": any(app['Skills'] for app in applications),
"Interview Scheduled": any(app['Status'] == 'Interviewing' for app in applications)
}
for achievement, earned in achievements.items():
if earned:
st.success(f"🎉 {achievement}")
else:
st.info(f"🔜 {achievement}")
# Progress Bar
progress = min(num_apps / 10, 1.0) # Ensure progress is between 0.0 and 1.0
st.write("**Overall Progress:**")
st.progress(progress)
st.write(f"{progress * 100:.0f}% complete")
def resource_library_page():
st.header("📚 Resource Library")
st.write("""
Access a collection of templates and guides to enhance your job search.
""")
resources = [
{
"title": "Resume Template",
"description": "A professional resume template in DOCX format.",
"file": "./resume_template.docx"
},
{
"title": "Cover Letter Template",
"description": "A customizable cover letter template.",
"file": "./cover_letter_template.docx"
},
{
"title": "Job Application Checklist",
"description": "Ensure you have all the necessary steps covered during your job search.",
"file": "./application_checklist.pdf"
}
]
for resource in resources:
st.markdown(f"### {resource['title']}")
st.write(resource['description'])
try:
with open(resource['file'], "rb") as file:
btn = st.download_button(
label="⬇️ Download",
data=file,
file_name=os.path.basename(resource['file']),
mime="application/octet-stream"
)
except FileNotFoundError:
st.error(f"❌ File {resource['file']} not found. Please ensure the file is in the correct directory.")
st.write("---")
def success_stories_page():
st.header("🌟 Success Stories")
st.write("""
Hear from our users who have successfully landed their dream jobs with our assistance!
""")
# Example testimonials
testimonials = [
{
"name": "Rahul Sharma",
"position": "Data Scientist at TechCorp",
"testimonial": "This app transformed my job search process. The resume analysis and personalized emails were game-changers!",
"image": "images/user1.jpg" # Replace with actual image paths
},
{
"name": "Priya Mehta",
"position": "Machine Learning Engineer at InnovateX",
"testimonial": "The interview preparation module helped me ace my interviews with confidence. Highly recommended!",
"image": "images/user2.jpg"
}
]
for user in testimonials:
col1, col2 = st.columns([1, 3])
with col1:
try:
st.image(user["image"], width=100)
except:
st.write("![User Image](https://via.placeholder.com/100)")
with col2:
st.write(f"**{user['name']}**")
st.write(f"*{user['position']}*")
st.write(f"\"{user['testimonial']}\"")
st.write("---")
def chatbot_support_page():
st.header("🤖 AI-Powered Chatbot Support")
st.write("""
Have questions or need assistance? Chat with our AI-powered assistant!
""")
# Initialize session state for chatbot
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
# User input
user_input = st.text_input("🗨️ You:", key="user_input")
if st.button("Send"):
if user_input:
# Append user message to chat history
st.session_state['chat_history'].append({"message": user_input, "is_user": True})
prompt = f"""
You are a helpful assistant for a Job Application Assistant app. Answer the user's query based on the following context:
{user_input}
"""
try:
# Invoke the LLM to get a response
response = llm.invoke(prompt)
assistant_message = response.content.strip()
# Append assistant response to chat history
st.session_state['chat_history'].append({"message": assistant_message, "is_user": False})
except Exception as e:
error_message = "❌ Sorry, I encountered an error while processing your request."
st.session_state['chat_history'].append({"message": error_message, "is_user": False})
st.error(f"❌ Error in chatbot: {e}")
# Display chat history using streamlit-chat
for chat in st.session_state['chat_history']:
if chat['is_user']:
message(chat['message'], is_user=True, avatar_style="thumbs")
else:
message(chat['message'], is_user=False, avatar_style="bottts")
def help_page():
st.header("❓ Help & FAQ")
with st.expander("🛠️ How do I generate a cover letter?"):
st.write("""
To generate a cover letter, navigate to the **Cover Letter Generator** section, enter the job link, upload your resume, and click on **Generate Cover Letter**.
""")
with st.expander("📋 How do I track my applications?"):
st.write("""
Use the **Application Tracking Dashboard** to add new applications, update their status, and monitor deadlines.
""")
with st.expander("📄 How can I optimize my resume?"):
st.write("""
Upload your resume in the **Resume Analysis** section to extract skills and receive optimization suggestions.
""")
with st.expander("📥 How do I import my applications?"):
st.write("""
In the **Application Tracking Dashboard**, use the **Import Applications** section to upload a CSV file containing your applications. Ensure the CSV has the required columns.
""")
with st.expander("🗣️ How do I provide feedback?"):
st.write("""
Navigate to the **Feedback and Continuous Improvement** section, fill out the form, and submit your feedback.
""")
# -------------------------------
# Main App Function
# -------------------------------
def main_app():
# Apply a consistent theme or style
st.markdown(
"""
<style>
.reportview-container {
background-color: #f5f5f5;
}
.sidebar .sidebar-content {
background-image: linear-gradient(#2e7bcf, #2e7bcf);
color: white;
}
</style>
""",
unsafe_allow_html=True
)
# Sidebar Navigation using streamlit_option_menu
with st.sidebar:
selected = option_menu(
menu_title="📂 Main Menu",
options=["Email Generator", "Cover Letter Generator", "Resume Analysis", "Application Tracking",
"Job Recommendations", "Labor Market Insights", "Interview Preparation", "Personalized Learning Paths",
"Networking Opportunities", "Feedback", "Gamification", "Resource Library",
"Success Stories", "Chatbot Support", "Help"],
icons=["envelope", "file-earmark-text", "file-person", "briefcase",
"search", "bar-chart-line", "microphone", "book",
"people", "chat-left-text", "trophy", "collection",
"star", "robot", "question-circle"],
menu_icon="cast",
default_index=0,
styles={
"container": {"padding": "5!important", "background-color": "#2e7bcf"},
"icon": {"color": "white", "font-size": "18px"},
"nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px", "--hover-color": "#6b9eff"},
"nav-link-selected": {"background-color": "#1e5aab"},
}
)
# Route to the selected page
if selected == "Email Generator":
email_generator_page()
elif selected == "Cover Letter Generator":
cover_letter_generator_page()
elif selected == "Resume Analysis":
resume_analysis_page()
elif selected == "Application Tracking":
application_tracking_dashboard()
elif selected == "Job Recommendations":
job_recommendations_module()
elif selected == "Labor Market Insights":
labor_market_insights_module()
elif selected == "Interview Preparation":
interview_preparation_module()
elif selected == "Personalized Learning Paths":
personalized_learning_paths_module()
elif selected == "Networking Opportunities":
networking_opportunities_module()
elif selected == "Feedback":
feedback_and_improvement_module()
elif selected == "Gamification":
gamification_module()
elif selected == "Resource Library":
resource_library_page()
elif selected == "Success Stories":
success_stories_page()
elif selected == "Chatbot Support":
chatbot_support_page()
elif selected == "Help":
help_page()
if __name__ == "__main__":
main_app()