Spaces:
Sleeping
Sleeping
File size: 64,313 Bytes
19a9439 0e8be63 0b0fa7c 9d2803a 0e8be63 0175ebc 0c0b5ad ad6ef2a ce04c1a 0175ebc 0e8be63 8a2ea33 ad6ef2a 2d0a829 feca185 ad6ef2a feca185 19a9439 384abd1 2d0a829 811efd0 364ed89 811efd0 7f28832 811efd0 7f28832 811efd0 7f28832 811efd0 0175ebc 811efd0 0c0b5ad 8a2ea33 0c0b5ad 0e8be63 8a2ea33 0e8be63 8a2ea33 0e8be63 8a2ea33 0e8be63 8a2ea33 0e8be63 8a2ea33 0e8be63 8a2ea33 0e8be63 8a2ea33 0e8be63 8a2ea33 0e8be63 8a2ea33 0e8be63 384abd1 ce04c1a 384abd1 ce04c1a 384abd1 ce04c1a 384abd1 ce04c1a 384abd1 ce04c1a 384abd1 ce04c1a 384abd1 ce04c1a 384abd1 ce04c1a 384abd1 ce04c1a 384abd1 d6a0cb3 ce04c1a d6a0cb3 0e8be63 d6a0cb3 ce04c1a 384abd1 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 0e8be63 8a2ea33 384abd1 ce04c1a 384abd1 ce04c1a 8a2ea33 384abd1 8a2ea33 384abd1 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 2d0a829 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 2d0a829 ce04c1a 8a2ea33 0e8be63 8a2ea33 ce04c1a 0e8be63 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 0e8be63 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 0e8be63 384abd1 0c0b5ad 8a2ea33 0c0b5ad 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 384abd1 8a2ea33 0c0b5ad 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 88ddc48 811efd0 88ddc48 811efd0 88ddc48 8a2ea33 88ddc48 8a2ea33 88ddc48 811efd0 88ddc48 811efd0 88ddc48 811efd0 88ddc48 811efd0 88ddc48 811efd0 88ddc48 811efd0 88ddc48 811efd0 8a2ea33 811efd0 384abd1 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 7f28832 811efd0 8a2ea33 811efd0 8a2ea33 7f28832 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 ce04c1a 8a2ea33 2d0a829 ce04c1a 8a2ea33 ce04c1a 8a2ea33 811efd0 8a2ea33 811efd0 0c0b5ad 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 0c0b5ad 7f28832 0c0b5ad 7f28832 0c0b5ad 7f28832 0c0b5ad 8a2ea33 0c0b5ad 7f28832 8a2ea33 811efd0 8a2ea33 811efd0 0c0b5ad 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 0c0b5ad 8a2ea33 0c0b5ad 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 7f28832 811efd0 7f28832 811efd0 8a2ea33 811efd0 7f28832 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 7f28832 811efd0 7f28832 811efd0 8a2ea33 811efd0 8a2ea33 811efd0 7f28832 811efd0 7f28832 811efd0 8a2ea33 811efd0 8a2ea33 7f28832 8a2ea33 811efd0 8a2ea33 811efd0 8a2ea33 0c0b5ad 811efd0 0c0b5ad 811efd0 0c0b5ad 8a2ea33 0c0b5ad 8a2ea33 ce04c1a 8a2ea33 ce04c1a 8a2ea33 0c0b5ad 811efd0 8a2ea33 811efd0 2d0a829 811efd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 |
import streamlit as st
import requests
from langchain_groq import ChatGroq
from streamlit_chat import message
import plotly.express as px
import pandas as pd
import sqlite3
from datetime import datetime, timedelta
import re
import os
from streamlit_option_menu import option_menu
import fitz # PyMuPDF
from bs4 import BeautifulSoup
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
RAPIDAPI_KEY = st.secrets["RAPIDAPI_KEY"]
YOUTUBE_API_KEY = st.secrets["YOUTUBE_API_KEY"]
THE_MUSE_API_KEY = st.secrets.get("THE_MUSE_API_KEY", "")
BLS_API_KEY = st.secrets.get("BLS_API_KEY", "")
llm = ChatGroq(
temperature=0,
groq_api_key=GROQ_API_KEY,
model_name="llama-3.1-70b-versatile"
)
@st.cache_data(ttl=3600)
def extract_text_from_pdf(pdf_file):
"""
Extracts text from an uploaded PDF file.
"""
text = ""
try:
with fitz.open(stream=pdf_file.read(), filetype="pdf") as doc:
for page in doc:
text += page.get_text()
return text
except Exception as e:
st.error(f"Error extracting text from PDF: {e}")
return ""
@st.cache_data(ttl=3600)
def extract_job_description(job_link):
"""
Fetches and extracts job description text from a given URL.
"""
try:
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
}
response = requests.get(job_link, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# You might need to adjust the selectors based on the website's structure
job_description = soup.get_text(separator='\n')
return job_description.strip()
except Exception as e:
st.error(f"Error fetching job description: {e}")
return ""
@st.cache_data(ttl=3600)
def extract_requirements(job_description):
"""
Uses Groq to extract job requirements from the job description.
"""
prompt = f"""
The following is a job description:
{job_description}
Extract the list of job requirements, qualifications, and skills from the job description. Provide them as a numbered list.
Requirements:
"""
try:
response = llm.invoke(prompt)
requirements = response.content.strip()
return requirements
except Exception as e:
st.error(f"Error extracting requirements: {e}")
return ""
@st.cache_data(ttl=3600)
def generate_email(job_description, requirements, resume_text):
"""
Generates a personalized cold email using Groq based on the job description, requirements, and resume.
"""
prompt = f"""
You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Craft a concise and professional cold email to a potential employer based on the following information:
**Job Description:**
{job_description}
**Extracted Requirements:**
{requirements}
**Your Resume:**
{resume_text}
**Email Requirements:**
- **Introduction:** Briefly introduce yourself and mention the specific job you are applying for.
- **Body:** Highlight your relevant skills, projects, internships, and leadership experiences that align with the job requirements.
- **Value Proposition:** Explain how your fresh perspective and recent academic knowledge can add value to the company.
- **Closing:** Express enthusiasm for the opportunity, mention your willingness for an interview, and thank the recipient for their time.
"""
try:
response = llm.invoke(prompt)
email_text = response.content.strip()
return email_text
except Exception as e:
st.error(f"Error generating email: {e}")
return ""
@st.cache_data(ttl=3600)
def generate_cover_letter(job_description, requirements, resume_text):
"""
Generates a personalized cover letter using Groq based on the job description, requirements, and resume.
"""
prompt = f"""
You are Adithya S Nair, a recent Computer Science graduate specializing in Artificial Intelligence and Machine Learning. Compose a personalized and professional cover letter based on the following information:
**Job Description:**
{job_description}
**Extracted Requirements:**
{requirements}
**Your Resume:**
{resume_text}
**Cover Letter Requirements:**
1. **Greeting:** Address the hiring manager by name if available; otherwise, use a generic greeting such as "Dear Hiring Manager."
2. **Introduction:** Begin with an engaging opening that mentions the specific position you are applying for and conveys your enthusiasm.
3. **Body:**
- **Skills and Experiences:** Highlight relevant technical skills, projects, internships, and leadership roles that align with the job requirements.
- **Alignment:** Demonstrate how your academic background and hands-on experiences make you a suitable candidate for the role.
4. **Value Proposition:** Explain how your fresh perspective, recent academic knowledge, and eagerness to learn can contribute to the company's success.
5. **Conclusion:** End with a strong closing statement expressing your interest in an interview, your availability, and gratitude for the hiring manager’s time and consideration.
6. **Professional Tone:** Maintain a respectful and professional tone throughout the letter.
"""
try:
response = llm.invoke(prompt)
cover_letter = response.content.strip()
return cover_letter
except Exception as e:
st.error(f"Error generating cover letter: {e}")
return ""
@st.cache_data(ttl=3600)
def extract_skills(text):
"""
Extracts a list of skills from the resume text using Groq.
"""
prompt = f"""
Extract a comprehensive list of technical and soft skills from the following resume text. Provide the skills as a comma-separated list.
Resume Text:
{text}
Skills:
"""
try:
response = llm.invoke(prompt)
skills = response.content.strip()
# Clean and split the skills
skills_list = [skill.strip() for skill in re.split(',|\n', skills) if skill.strip()]
return skills_list
except Exception as e:
st.error(f"Error extracting skills: {e}")
return []
@st.cache_data(ttl=3600)
def suggest_keywords(resume_text, job_description=None):
"""
Suggests additional relevant keywords to enhance resume compatibility with ATS.
"""
prompt = f"""
Analyze the following resume text and suggest additional relevant keywords that can enhance its compatibility with Applicant Tracking Systems (ATS). If a job description is provided, tailor the keywords to align with the job requirements.
Resume Text:
{resume_text}
Job Description:
{job_description if job_description else "N/A"}
Suggested Keywords:
"""
try:
response = llm.invoke(prompt)
keywords = response.content.strip()
keywords_list = [keyword.strip() for keyword in re.split(',|\n', keywords) if keyword.strip()]
return keywords_list
except Exception as e:
st.error(f"Error suggesting keywords: {e}")
return []
def create_skill_distribution_chart(skills):
"""
Creates a bar chart showing the distribution of skills.
"""
skill_counts = {}
for skill in skills:
skill_counts[skill] = skill_counts.get(skill, 0) + 1
df = pd.DataFrame(list(skill_counts.items()), columns=['Skill', 'Count'])
fig = px.bar(df, x='Skill', y='Count', title='Skill Distribution')
return fig
def create_experience_timeline(resume_text):
"""
Creates an experience timeline from the resume text.
"""
# Extract work experience details using Groq
prompt = f"""
From the following resume text, extract the job titles, companies, and durations of employment. Provide the information in a table format with columns: Job Title, Company, Duration (in years).
Resume Text:
{resume_text}
Table:
"""
try:
response = llm.invoke(prompt)
table_text = response.content.strip()
# Parse the table_text to create a DataFrame
data = []
for line in table_text.split('\n'):
if line.strip() and not line.lower().startswith("job title"):
parts = line.split('|')
if len(parts) == 3:
job_title = parts[0].strip()
company = parts[1].strip()
duration = parts[2].strip()
# Convert duration to a float representing years
duration_years = parse_duration(duration)
data.append({"Job Title": job_title, "Company": company, "Duration (years)": duration_years})
df = pd.DataFrame(data)
if not df.empty:
# Create a cumulative duration for timeline
df['Start Year'] = df['Duration (years)'].cumsum() - df['Duration (years)']
df['End Year'] = df['Duration (years)'].cumsum()
fig = px.timeline(df, x_start="Start Year", x_end="End Year", y="Job Title", color="Company", title="Experience Timeline")
fig.update_yaxes(categoryorder="total ascending")
return fig
else:
return None
except Exception as e:
st.error(f"Error creating experience timeline: {e}")
return None
def parse_duration(duration_str):
"""
Parses duration strings like '2 years' or '6 months' into float years.
"""
try:
if 'year' in duration_str.lower():
years = float(re.findall(r'\d+\.?\d*', duration_str)[0])
return years
elif 'month' in duration_str.lower():
months = float(re.findall(r'\d+\.?\d*', duration_str)[0])
return months / 12
else:
return 0
except:
return 0
# -------------------------------
# API Integration Functions
# -------------------------------
# Remotive API Integration
@st.cache_data(ttl=86400) # Cache results for 1 day
def fetch_remotive_jobs_api(job_title, location=None, category=None, remote=True, max_results=50):
"""
Fetches job listings from Remotive API based on user preferences.
Args:
job_title (str): The job title to search for.
location (str, optional): The job location. Defaults to None.
category (str, optional): The job category. Defaults to None.
remote (bool, optional): Whether to fetch remote jobs. Defaults to True.
max_results (int, optional): Maximum number of jobs to fetch. Defaults to 50.
Returns:
list: A list of job dictionaries.
"""
base_url = "https://remotive.com/api/remote-jobs"
params = {
"search": job_title,
"limit": max_results
}
if category:
params["category"] = category
try:
response = requests.get(base_url, params=params)
response.raise_for_status()
jobs = response.json().get("jobs", [])
if remote:
# Filter for remote jobs if not already
jobs = [job for job in jobs if job.get("candidate_required_location") == "Worldwide" or job.get("remote") == True]
return jobs
except requests.exceptions.RequestException as e:
st.error(f"Error fetching jobs from Remotive: {e}")
return []
# The Muse API Integration
@st.cache_data(ttl=86400) # Cache results for 1 day
def fetch_muse_jobs_api(job_title, location=None, category=None, max_results=50):
"""
Fetches job listings from The Muse API based on user preferences.
Args:
job_title (str): The job title to search for.
location (str, optional): The job location. Defaults to None.
category (str, optional): The job category. Defaults to None.
max_results (int, optional): Maximum number of jobs to fetch. Defaults to 50.
Returns:
list: A list of job dictionaries.
"""
base_url = "https://www.themuse.com/api/public/jobs"
headers = {
"Content-Type": "application/json"
}
params = {
"page": 1,
"per_page": max_results,
"category": category,
"location": location,
"company": None # Can be extended based on needs
}
try:
response = requests.get(base_url, params=params, headers=headers)
response.raise_for_status()
jobs = response.json().get("results", [])
# Filter based on job title
filtered_jobs = [job for job in jobs if job_title.lower() in job.get("name", "").lower()]
return filtered_jobs
except requests.exceptions.RequestException as e:
st.error(f"Error fetching jobs from The Muse: {e}")
return []
# Indeed API Integration using /list and /get
@st.cache_data(ttl=86400) # Cache results for 1 day
def fetch_indeed_jobs_list_api(job_title, location="United States", distance="1.0", language="en_GB", remoteOnly="false", datePosted="month", employmentTypes="fulltime;parttime;intern;contractor", index=0, page_size=10):
"""
Fetches a list of job IDs from Indeed API based on user preferences.
Args:
job_title (str): The job title to search for.
location (str, optional): The job location. Defaults to "United States".
distance (str, optional): Search radius in miles. Defaults to "1.0".
language (str, optional): Language code. Defaults to "en_GB".
remoteOnly (str, optional): "true" or "false". Defaults to "false".
datePosted (str, optional): e.g., "month". Defaults to "month".
employmentTypes (str, optional): e.g., "fulltime;parttime;intern;contractor". Defaults to "fulltime;parttime;intern;contractor".
index (int, optional): Pagination index. Defaults to 0.
page_size (int, optional): Number of jobs to fetch. Defaults to 10.
Returns:
list: A list of job IDs.
"""
url = "https://jobs-api14.p.rapidapi.com/list"
querystring = {
"query": job_title,
"location": location,
"distance": distance,
"language": language,
"remoteOnly": remoteOnly,
"datePosted": datePosted,
"employmentTypes": employmentTypes,
"index": str(index),
"page_size": str(page_size)
}
headers = {
"x-rapidapi-key": RAPIDAPI_KEY,
"x-rapidapi-host": "jobs-api14.p.rapidapi.com"
}
try:
response = requests.get(url, headers=headers, params=querystring)
response.raise_for_status()
data = response.json()
job_ids = [job["id"] for job in data.get("jobs", [])]
return job_ids
except requests.exceptions.HTTPError as http_err:
if response.status_code == 400:
st.error("❌ Bad Request: Please check the parameters you're sending.")
elif response.status_code == 403:
st.error("❌ Access Forbidden: Check your API key and permissions.")
elif response.status_code == 404:
st.error("❌ Resource Not Found: Verify the endpoint and parameters.")
else:
st.error(f"❌ HTTP error occurred: {http_err}")
return []
except requests.exceptions.RequestException as req_err:
st.error(f"❌ Request Exception: {req_err}")
return []
except Exception as e:
st.error(f"❌ An unexpected error occurred: {e}")
return []
@st.cache_data(ttl=86400) # Cache results for 1 day
def fetch_indeed_job_details_api(job_id, language="en_GB"):
"""
Fetches job details from Indeed API based on job ID.
Args:
job_id (str): The job ID.
language (str, optional): Language code. Defaults to "en_GB".
Returns:
dict: Job details.
"""
url = "https://jobs-api14.p.rapidapi.com/get"
querystring = {
"id": job_id,
"language": language
}
headers = {
"x-rapidapi-key": RAPIDAPI_KEY,
"x-rapidapi-host": "jobs-api14.p.rapidapi.com"
}
try:
response = requests.get(url, headers=headers, params=querystring)
response.raise_for_status()
job_details = response.json()
return job_details
except requests.exceptions.HTTPError as http_err:
if response.status_code == 400:
st.error("❌ Bad Request: Please check the job ID and parameters.")
elif response.status_code == 403:
st.error("❌ Access Forbidden: Check your API key and permissions.")
elif response.status_code == 404:
st.error("❌ Job Not Found: Verify the job ID.")
else:
st.error(f"❌ HTTP error occurred: {http_err}")
return {}
except requests.exceptions.RequestException as req_err:
st.error(f"❌ Request Exception: {req_err}")
return {}
except Exception as e:
st.error(f"❌ An unexpected error occurred: {e}")
return {}
def recommend_indeed_jobs(user_skills, user_preferences):
"""
Recommends jobs from Indeed API based on user skills and preferences.
Args:
user_skills (list): List of user's skills.
user_preferences (dict): User preferences like job title, location, category.
Returns:
list: Recommended job listings.
"""
job_title = user_preferences.get("job_title", "")
location = user_preferences.get("location", "United States")
category = user_preferences.get("category", "")
language = "en_GB"
# Fetch job IDs
job_ids = fetch_indeed_jobs_list_api(job_title, location=location, category=category, page_size=5) # Limiting to 5 for API call count
recommended_jobs = []
api_calls_needed = len(job_ids) # Each /get call counts as one
# Check if enough API calls are left
if not can_make_api_calls(api_calls_needed):
st.error("❌ You have reached your monthly API request limit. Please try again next month.")
return []
for job_id in job_ids:
job_details = fetch_indeed_job_details_api(job_id, language=language)
if job_details and not job_details.get("hasError", True):
job_description = job_details.get("description", "").lower()
match_score = sum(skill.lower() in job_description for skill in user_skills)
if match_score > 0:
recommended_jobs.append((match_score, job_details))
decrement_api_calls(1)
# Sort jobs based on match_score
recommended_jobs.sort(reverse=True, key=lambda x: x[0])
# Return only the job dictionaries
return [job for score, job in recommended_jobs[:10]] # Top 10 recommendations
def recommend_jobs(user_skills, user_preferences):
"""
Recommends jobs based on user skills and preferences from Remotive, The Muse, and Indeed APIs.
Args:
user_skills (list): List of user's skills.
user_preferences (dict): User preferences like job title, location, category.
Returns:
list: Recommended job listings.
"""
# Fetch from Remotive
remotive_jobs = fetch_remotive_jobs_api(user_preferences.get("job_title", ""), user_preferences.get("location"), user_preferences.get("category"))
# Fetch from The Muse
muse_jobs = fetch_muse_jobs_api(user_preferences.get("job_title", ""), user_preferences.get("location"), user_preferences.get("category"))
# Fetch from Indeed
indeed_jobs = recommend_indeed_jobs(user_skills, user_preferences)
# Combine all job listings
combined_jobs = remotive_jobs + muse_jobs + indeed_jobs
# Remove duplicates based on job URL
unique_jobs = {}
for job in combined_jobs:
url = job.get("url") or job.get("redirect_url") or job.get("url_standard")
if url and url not in unique_jobs:
unique_jobs[url] = job
return list(unique_jobs.values())
# -------------------------------
# BLS API Integration and Display
# -------------------------------
@st.cache_data(ttl=86400) # Cache results for 1 day
def fetch_bls_data(series_ids, start_year=2020, end_year=datetime.now().year):
"""
Fetches labor market data from the BLS API.
Args:
series_ids (list): List of BLS series IDs.
start_year (int, optional): Start year for data. Defaults to 2020.
end_year (int, optional): End year for data. Defaults to current year.
Returns:
dict: BLS data response.
"""
bls_url = "https://api.bls.gov/publicAPI/v2/timeseries/data/"
headers = {
"Content-Type": "application/json"
}
payload = {
"seriesid": series_ids,
"startyear": str(start_year),
"endyear": str(end_year)
}
try:
response = requests.post(bls_url, json=payload, headers=headers)
response.raise_for_status()
data = response.json()
if data.get("status") == "REQUEST_SUCCEEDED":
return data.get("Results", {})
else:
st.error("BLS API request failed.")
return {}
except requests.exceptions.RequestException as e:
st.error(f"Error fetching data from BLS: {e}")
return {}
def display_bls_data(series_id, title):
"""
Processes and displays BLS data with visualizations.
Args:
series_id (str): BLS series ID.
title (str): Title for the visualization.
"""
data = fetch_bls_data([series_id])
if not data:
st.info("No data available.")
return
series_data = data.get("series", [])[0]
series_title = series_data.get("title", title)
observations = series_data.get("data", [])
# Extract year and value
years = [int(obs["year"]) for obs in observations]
values = [float(obs["value"].replace(',', '')) for obs in observations]
df = pd.DataFrame({
"Year": years,
"Value": values
}).sort_values("Year")
st.markdown(f"### {series_title}")
fig = px.line(df, x="Year", y="Value", title=series_title, markers=True)
st.plotly_chart(fig, use_container_width=True)
# -------------------------------
# API Usage Counter Functions
# -------------------------------
def init_api_usage_db():
"""
Initializes the SQLite database and creates the api_usage table if it doesn't exist.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS api_usage (
id INTEGER PRIMARY KEY AUTOINCREMENT,
count INTEGER,
last_reset DATE
)
''')
# Check if a row exists, if not, initialize
c.execute('SELECT COUNT(*) FROM api_usage')
if c.fetchone()[0] == 0:
# Initialize with 25 requests and current date
c.execute('INSERT INTO api_usage (count, last_reset) VALUES (?, ?)', (25, datetime.now().date()))
conn.commit()
conn.close()
def get_api_usage():
"""
Retrieves the current API usage count and last reset date.
Returns:
tuple: (count, last_reset_date)
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('SELECT count, last_reset FROM api_usage WHERE id = 1')
row = c.fetchone()
conn.close()
if row:
return row[0], datetime.strptime(row[1], "%Y-%m-%d").date()
else:
return 25, datetime.now().date()
def reset_api_usage():
"""
Resets the API usage count to 25 and updates the last reset date.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('UPDATE api_usage SET count = ?, last_reset = ? WHERE id = 1', (25, datetime.now().date()))
conn.commit()
conn.close()
def can_make_api_calls(requests_needed):
"""
Checks if there are enough API calls remaining.
Args:
requests_needed (int): Number of API calls required.
Returns:
bool: True if allowed, False otherwise.
"""
count, last_reset = get_api_usage()
today = datetime.now().date()
if today >= last_reset + timedelta(days=30):
reset_api_usage()
count, last_reset = get_api_usage()
if count >= requests_needed:
return True
else:
return False
def decrement_api_calls(requests_used):
"""
Decrements the API usage count by the number of requests used.
Args:
requests_used (int): Number of API calls used.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('SELECT count FROM api_usage WHERE id = 1')
row = c.fetchone()
if row:
new_count = row[0] - requests_used
if new_count < 0:
new_count = 0
c.execute('UPDATE api_usage SET count = ? WHERE id = 1', (new_count,))
conn.commit()
conn.close()
# -------------------------------
# Application Tracking Database Functions
# -------------------------------
def init_db():
"""
Initializes the SQLite database and creates the applications table if it doesn't exist.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS applications (
id INTEGER PRIMARY KEY AUTOINCREMENT,
job_title TEXT,
company TEXT,
application_date TEXT,
status TEXT,
deadline TEXT,
notes TEXT,
job_description TEXT,
resume_text TEXT,
skills TEXT
)
''')
conn.commit()
conn.close()
def add_application(job_title, company, application_date, status, deadline, notes, job_description, resume_text, skills):
"""
Adds a new job application to the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('''
INSERT INTO applications (job_title, company, application_date, status, deadline, notes, job_description, resume_text, skills)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (job_title, company, application_date, status, deadline, notes, job_description, resume_text, ', '.join(skills)))
conn.commit()
conn.close()
def fetch_applications():
"""
Fetches all applications from the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('SELECT * FROM applications')
data = c.fetchall()
conn.close()
applications = []
for app in data:
applications.append({
"ID": app[0],
"Job Title": app[1],
"Company": app[2],
"Application Date": app[3],
"Status": app[4],
"Deadline": app[5],
"Notes": app[6],
"Job Description": app[7],
"Resume Text": app[8],
"Skills": app[9].split(', ') if app[9] else []
})
return applications
def update_application_status(app_id, new_status):
"""
Updates the status of an application.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('UPDATE applications SET status = ? WHERE id = ?', (new_status, app_id))
conn.commit()
conn.close()
def delete_application(app_id):
"""
Deletes an application from the database.
"""
conn = sqlite3.connect('applications.db')
c = conn.cursor()
c.execute('DELETE FROM applications WHERE id = ?', (app_id,))
conn.commit()
conn.close()
# -------------------------------
# Learning Path Generation Function
# -------------------------------
@st.cache_data(ttl=86400) # Cache results for 1 day
def generate_learning_path(career_goal, current_skills):
"""
Generates a personalized learning path using Groq based on career goal and current skills.
"""
prompt = f"""
Based on the following career goal and current skills, create a personalized learning path that includes recommended courses, projects, and milestones to achieve the career goal.
**Career Goal:**
{career_goal}
**Current Skills:**
{current_skills}
**Learning Path:**
"""
try:
response = llm.invoke(prompt)
learning_path = response.content.strip()
return learning_path
except Exception as e:
st.error(f"Error generating learning path: {e}")
return ""
# -------------------------------
# YouTube Video Search and Embed Functions
# -------------------------------
@st.cache_data(ttl=86400) # Cache results for 1 day
def search_youtube_videos(query, max_results=2, video_duration="long"):
"""
Searches YouTube for videos matching the query and returns video URLs.
Args:
query (str): Search query.
max_results (int, optional): Number of videos to return. Defaults to 2.
video_duration (str, optional): Duration filter ('any', 'short', 'medium', 'long'). Defaults to "long".
Returns:
list: List of YouTube video URLs.
"""
search_url = "https://www.googleapis.com/youtube/v3/search"
params = {
"part": "snippet",
"q": query,
"type": "video",
"maxResults": max_results,
"videoDuration": video_duration,
"key": YOUTUBE_API_KEY
}
try:
response = requests.get(search_url, params=params)
response.raise_for_status()
results = response.json().get("items", [])
video_urls = [f"https://www.youtube.com/watch?v={item['id']['videoId']}" for item in results]
return video_urls
except requests.exceptions.RequestException as e:
st.error(f"❌ Error fetching YouTube videos: {e}")
return []
def embed_youtube_videos(video_urls, module_name):
"""
Embeds YouTube videos in the Streamlit app.
Args:
video_urls (list): List of YouTube video URLs.
module_name (str): Name of the module for context.
"""
for url in video_urls:
st.video(url)
# -------------------------------
# Job Recommendations and BLS Integration
# -------------------------------
def labor_market_insights_module():
st.header("📈 Labor Market Insights")
st.write("""
Gain valuable insights into the current labor market trends, employment rates, and industry growth to make informed career decisions.
""")
# Define BLS Series IDs based on desired data
# Example: Unemployment rate (Series ID: LNS14000000)
# Reference: https://www.bls.gov/web/laus/laumstrk.htm
unemployment_series_id = "LNS14000000" # Unemployment Rate
employment_series_id = "CEU0000000001" # Total Employment
# Display Unemployment Rate
display_bls_data(unemployment_series_id, "Unemployment Rate (%)")
# Display Total Employment
display_bls_data(employment_series_id, "Total Employment")
# Additional Insights
st.subheader("💡 Additional Insights")
st.write("""
- **Industry Growth:** Understanding which industries are growing can help you target your job search effectively.
- **Salary Trends:** Keeping an eye on salary trends ensures that you negotiate effectively and align your expectations.
- **Geographical Demand:** Some regions may have higher demand for certain roles, guiding your location preferences.
""")
# -------------------------------
# Page Functions
# -------------------------------
def email_generator_page():
st.header("📧 Automated Email Generator")
st.write("""
Generate personalized cold emails based on job postings and your resume.
""")
# Create two columns for input fields
col1, col2 = st.columns(2)
with col1:
job_link = st.text_input("🔗 Enter the job link:")
with col2:
uploaded_file = st.file_uploader("📄 Upload your resume (PDF format):", type="pdf")
if st.button("Generate Email"):
if not job_link:
st.error("Please enter a job link.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Processing..."):
# Extract job description
job_description = extract_job_description(job_link)
if not job_description:
st.error("Failed to extract job description.")
return
# Extract requirements
requirements = extract_requirements(job_description)
if not requirements:
st.error("Failed to extract requirements.")
return
# Extract resume text
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
# Generate email
email_text = generate_email(job_description, requirements, resume_text)
if email_text:
st.subheader("📨 Generated Email:")
st.write(email_text)
# Provide download option
st.download_button(
label="Download Email",
data=email_text,
file_name="generated_email.txt",
mime="text/plain"
)
else:
st.error("Failed to generate email.")
def cover_letter_generator_page():
st.header("📝 Automated Cover Letter Generator")
st.write("""
Generate personalized cover letters based on job postings and your resume.
""")
# Create two columns for input fields
col1, col2 = st.columns(2)
with col1:
job_link = st.text_input("🔗 Enter the job link:")
with col2:
uploaded_file = st.file_uploader("📄 Upload your resume (PDF format):", type="pdf")
if st.button("Generate Cover Letter"):
if not job_link:
st.error("Please enter a job link.")
return
if not uploaded_file:
st.error("Please upload your resume.")
return
with st.spinner("Processing..."):
# Extract job description
job_description = extract_job_description(job_link)
if not job_description:
st.error("Failed to extract job description.")
return
# Extract requirements
requirements = extract_requirements(job_description)
if not requirements:
st.error("Failed to extract requirements.")
return
# Extract resume text
resume_text = extract_text_from_pdf(uploaded_file)
if not resume_text:
st.error("Failed to extract text from resume.")
return
# Generate cover letter
cover_letter = generate_cover_letter(job_description, requirements, resume_text)
if cover_letter:
st.subheader("📝 Generated Cover Letter:")
st.write(cover_letter)
# Provide download option
st.download_button(
label="Download Cover Letter",
data=cover_letter,
file_name="generated_cover_letter.txt",
mime="text/plain"
)
else:
st.error("Failed to generate cover letter.")
def resume_analysis_page():
st.header("📄 Resume Analysis and Optimization")
st.write("""
Enhance your resume's effectiveness with our comprehensive analysis tools. Upload your resume to extract key information, receive optimization suggestions, and visualize your skills and experience.
""")
uploaded_file = st.file_uploader("📂 Upload your resume (PDF format):", type="pdf")
if uploaded_file:
resume_text = extract_text_from_pdf(uploaded_file)
if resume_text:
st.success("✅ Resume uploaded successfully!")
# Extracted Information
st.subheader("🔍 Extracted Information")
# Create tabs for organized sections
tabs = st.tabs(["💼 Skills", "🔑 Suggested Keywords"])
with tabs[0]:
skills = extract_skills(resume_text)
if skills:
st.markdown("**Identified Skills:**")
# Display skills as bullet points in columns
cols = st.columns(4)
for idx, skill in enumerate(skills, 1):
cols[idx % 4].write(f"- {skill}")
else:
st.info("No skills extracted.")
with tabs[1]:
keywords = suggest_keywords(resume_text)
if keywords:
st.markdown("**Suggested Keywords for ATS Optimization:**")
# Display keywords as bullet points in columns
cols = st.columns(4)
for idx, keyword in enumerate(keywords, 1):
cols[idx % 4].write(f"- {keyword}")
else:
st.info("No keywords suggested.")
# Optimization Suggestions
st.subheader("🛠️ Optimization Suggestions")
if keywords:
st.markdown("""
- **Keyword Optimization:** Incorporate the suggested keywords to improve ATS compatibility.
- **Enhance Relevant Sections:** Highlight skills and experiences that align closely with job descriptions.
""")
else:
st.markdown("- **Keyword Optimization:** No keywords suggested.")
st.markdown("""
- **Formatting:** Ensure consistent formatting for headings, bullet points, and text alignment to enhance readability.
- **Quantify Achievements:** Where possible, quantify your accomplishments to demonstrate impact.
- **Tailor Your Resume:** Customize your resume for each job application to emphasize relevant experiences.
""")
# Visual Resume Analytics
st.subheader("📊 Visual Resume Analytics")
# Create two columns for charts
viz_col1, viz_col2 = st.columns(2)
with viz_col1:
if skills:
st.markdown("**Skill Distribution:**")
fig_skills = create_skill_distribution_chart(skills)
st.plotly_chart(fig_skills, use_container_width=True)
else:
st.info("No skills to display.")
with viz_col2:
fig_experience = create_experience_timeline(resume_text)
if fig_experience:
st.markdown("**Experience Timeline:**")
st.plotly_chart(fig_experience, use_container_width=True)
else:
st.info("Not enough data to generate an experience timeline.")
# Save the resume and analysis to the database
st.subheader("💾 Save Resume Analysis")
if st.button("Save Resume Analysis"):
add_application(
job_title="N/A",
company="N/A",
application_date=datetime.now().strftime("%Y-%m-%d"),
status="N/A",
deadline="N/A",
notes="Resume Analysis",
job_description="N/A",
resume_text=resume_text,
skills=skills
)
st.success("✅ Resume analysis saved successfully!")
else:
st.error("❌ Failed to extract text from resume.")
def application_tracking_dashboard():
st.header("📋 Application Tracking Dashboard")
# Initialize database
init_db()
init_api_usage_db()
# Form to add a new application
st.subheader("➕ Add New Application")
with st.form("add_application"):
job_title = st.text_input("🖇️ Job Title")
company = st.text_input("🏢 Company")
application_date = st.date_input("📅 Application Date", datetime.today())
status = st.selectbox("📈 Status", ["Applied", "Interviewing", "Offered", "Rejected"])
deadline = st.date_input("⏰ Application Deadline", datetime.today() + timedelta(days=30))
notes = st.text_area("📝 Notes")
uploaded_file = st.file_uploader("📂 Upload Job Description (PDF)", type="pdf")
uploaded_resume = st.file_uploader("📄 Upload Resume (PDF)", type="pdf")
submitted = st.form_submit_button("➕ Add Application")
if submitted:
if uploaded_file:
job_description = extract_text_from_pdf(uploaded_file)
else:
job_description = ""
if uploaded_resume:
resume_text = extract_text_from_pdf(uploaded_resume)
skills = extract_skills(resume_text)
else:
resume_text = ""
skills = []
add_application(
job_title=job_title,
company=company,
application_date=application_date.strftime("%Y-%m-%d"),
status=status,
deadline=deadline.strftime("%Y-%m-%d"),
notes=notes,
job_description=job_description,
resume_text=resume_text,
skills=skills
)
st.success("✅ Application added successfully!")
# Display applications
st.subheader("📊 Your Applications")
applications = fetch_applications()
if applications:
df = pd.DataFrame(applications)
df = df.drop(columns=["Job Description", "Resume Text", "Skills"])
st.dataframe(df)
# Export Button
csv = df.to_csv(index=False).encode('utf-8')
st.download_button(
label="💾 Download Applications as CSV",
data=csv,
file_name='applications.csv',
mime='text/csv',
)
# Import Button
st.subheader("📥 Import Applications")
uploaded_csv = st.file_uploader("📁 Upload a CSV file", type="csv")
if uploaded_csv:
try:
imported_df = pd.read_csv(uploaded_csv)
# Validate required columns
required_columns = {"Job Title", "Company", "Application Date", "Status", "Deadline", "Notes"}
if not required_columns.issubset(imported_df.columns):
st.error("❌ Uploaded CSV is missing required columns.")
else:
for index, row in imported_df.iterrows():
job_title = row.get("Job Title", "N/A")
company = row.get("Company", "N/A")
application_date = row.get("Application Date", datetime.now().strftime("%Y-%m-%d"))
status = row.get("Status", "Applied")
deadline = row.get("Deadline", "")
notes = row.get("Notes", "")
job_description = row.get("Job Description", "")
resume_text = row.get("Resume Text", "")
skills = row.get("Skills", "").split(', ') if row.get("Skills") else []
add_application(
job_title=job_title,
company=company,
application_date=application_date,
status=status,
deadline=deadline,
notes=notes,
job_description=job_description,
resume_text=resume_text,
skills=skills
)
st.success("✅ Applications imported successfully!")
except Exception as e:
st.error(f"❌ Error importing applications: {e}")
# Actions: Update Status or Delete
for app in applications:
with st.expander(f"{app['Job Title']} at {app['Company']}"):
st.write(f"**📅 Application Date:** {app['Application Date']}")
st.write(f"**⏰ Deadline:** {app['Deadline']}")
st.write(f"**📈 Status:** {app['Status']}")
st.write(f"**📝 Notes:** {app['Notes']}")
if app['Job Description']:
st.write("**📄 Job Description:**")
st.write(app['Job Description'][:500] + "...")
if app['Skills']:
st.write("**💼 Skills:**", ', '.join(app['Skills']))
# Update status
new_status = st.selectbox("🔄 Update Status:", ["Applied", "Interviewing", "Offered", "Rejected"], key=f"status_{app['ID']}")
if st.button("🔁 Update Status", key=f"update_{app['ID']}"):
update_application_status(app['ID'], new_status)
st.success("✅ Status updated successfully!")
# Delete application
if st.button("🗑️ Delete Application", key=f"delete_{app['ID']}"):
delete_application(app['ID'])
st.success("✅ Application deleted successfully!")
else:
st.write("ℹ️ No applications found.")
def job_recommendations_module():
st.header("🔍 Job Matching & Recommendations")
st.write("""
Discover job opportunities tailored to your skills and preferences. Get personalized recommendations from multiple job platforms.
""")
# User Preferences Form
st.subheader("🎯 Set Your Preferences")
with st.form("preferences_form"):
job_title = st.text_input("🔍 Desired Job Title", placeholder="e.g., Data Scientist, Backend Developer")
location = st.text_input("📍 Preferred Location", placeholder="e.g., New York, NY, USA or Remote")
category = st.selectbox("📂 Job Category", ["", "Engineering", "Marketing", "Design", "Sales", "Finance", "Healthcare", "Education", "Other"])
user_skills_input = st.text_input("💡 Your Skills (comma-separated)", placeholder="e.g., Python, Machine Learning, SQL")
submitted = st.form_submit_button("🚀 Get Recommendations")
if submitted:
if not job_title or not user_skills_input:
st.error("❌ Please enter both job title and your skills.")
return
user_skills = [skill.strip() for skill in user_skills_input.split(",") if skill.strip()]
user_preferences = {
"job_title": job_title,
"location": location,
"category": category
}
with st.spinner("🔄 Fetching job recommendations..."):
# Fetch recommendations from all APIs (Remotive, The Muse, Indeed)
recommended_jobs = recommend_jobs(user_skills, user_preferences)
if recommended_jobs:
st.subheader("💼 Recommended Jobs:")
for idx, job in enumerate(recommended_jobs, 1):
# Depending on the API, job data structure might differ
job_title_display = job.get("title") or job.get("name") or job.get("jobTitle")
company_display = job.get("company", {}).get("name") or job.get("company_name") or job.get("employer", {}).get("name")
location_display = job.get("candidate_required_location") or job.get("location") or job.get("country")
salary_display = "N/A" # Salary is removed
job_url = job.get("url") or job.get("redirect_url") or job.get("url_standard")
st.markdown(f"### {idx}. {job_title_display}")
st.markdown(f"**🏢 Company:** {company_display}")
st.markdown(f"**📍 Location:** {location_display}")
st.markdown(f"**🔗 Job URL:** [Apply Here]({job_url})")
st.write("---")
else:
st.info("ℹ️ No job recommendations found based on your criteria.")
def interview_preparation_module():
st.header("🎤 Interview Preparation")
st.write("""
Prepare for your interviews with tailored mock questions and expert answers.
""")
# Create two columns for input fields
col1, col2 = st.columns(2)
with col1:
job_title = st.text_input("🔍 Enter the job title you're applying for:")
with col2:
company = st.text_input("🏢 Enter the company name:")
if st.button("🎯 Generate Mock Interview Questions"):
if not job_title or not company:
st.error("❌ Please enter both job title and company name.")
return
with st.spinner("⏳ Generating questions..."):
# Prompt to generate 50 interview questions with answers
prompt = f"""
Generate a list of 50 interview questions along with their answers for the position of {job_title} at {company}. Each question should be followed by a concise and professional answer.
"""
try:
# Invoke the LLM to get questions and answers
qa_text = llm.invoke(prompt).content.strip()
# Split into question-answer pairs
qa_pairs = qa_text.split('\n\n')
st.subheader("🗣️ Mock Interview Questions and Answers:")
for idx, qa in enumerate(qa_pairs, 1):
if qa.strip():
parts = qa.split('\n', 1)
if len(parts) == 2:
question = parts[0].strip()
answer = parts[1].strip()
st.markdown(f"**Q{idx}: {question}**")
st.markdown(f"**A:** {answer}")
st.write("---")
except Exception as e:
st.error(f"❌ Error generating interview questions: {e}")
def personalized_learning_paths_module():
st.header("📚 Personalized Learning Paths")
st.write("""
Receive tailored learning plans to help you acquire the skills needed for your desired career, complemented with curated video resources.
""")
# Create two columns for input fields
col1, col2 = st.columns(2)
with col1:
career_goal = st.text_input("🎯 Enter your career goal (e.g., Data Scientist, Machine Learning Engineer):")
with col2:
current_skills = st.text_input("💡 Enter your current skills (comma-separated):")
if st.button("🚀 Generate Learning Path"):
if not career_goal or not current_skills:
st.error("❌ Please enter both career goal and current skills.")
return
with st.spinner("🔄 Generating your personalized learning path..."):
learning_path = generate_learning_path(career_goal, current_skills)
if learning_path:
st.subheader("📜 Your Personalized Learning Path:")
st.write(learning_path)
# Assuming the learning path is divided into modules/subparts separated by newlines or numbering
# We'll extract subparts and embed YouTube videos for each
# Example format:
# 1. Module One
# 2. Module Two
# etc.
# Split learning path into modules
modules = re.split(r'\d+\.\s+', learning_path)
modules = [module.strip() for module in modules if module.strip()]
st.subheader("📹 Recommended YouTube Videos for Each Module:")
for module in modules:
# Search for long videos related to the module
video_urls = search_youtube_videos(query=module, max_results=2, video_duration="long")
if video_urls:
st.markdown(f"### {module}")
embed_youtube_videos(video_urls, module)
else:
st.write(f"No videos found for **{module}**.")
else:
st.error("❌ Failed to generate learning path.")
def networking_opportunities_module():
st.header("🤝 Networking Opportunities")
st.write("""
Expand your professional network by connecting with relevant industry peers and joining professional groups.
""")
# Create two columns for input fields
col1, col2 = st.columns(2)
with col1:
user_skills = st.text_input("💡 Enter your key skills (comma-separated):")
with col2:
industry = st.text_input("🏭 Enter your industry (e.g., Technology, Finance):")
if st.button("🔍 Find Networking Opportunities"):
if not user_skills or not industry:
st.error("❌ Please enter both key skills and industry.")
return
with st.spinner("🔄 Fetching networking opportunities..."):
# Suggest LinkedIn groups or connections based on skills and industry
prompt = f"""
Based on the following skills: {user_skills}, and industry: {industry}, suggest relevant LinkedIn groups, professional organizations, and industry events for networking.
"""
try:
suggestions = llm.invoke(prompt).content.strip()
st.subheader("🔗 Recommended Networking Groups and Events:")
st.write(suggestions)
except Exception as e:
st.error(f"❌ Error fetching networking opportunities: {e}")
def feedback_and_improvement_module():
st.header("🗣️ Feedback and Continuous Improvement")
st.write("""
We value your feedback! Let us know how we can improve your experience.
""")
with st.form("feedback_form"):
name = st.text_input("👤 Your Name")
email = st.text_input("📧 Your Email")
feedback_type = st.selectbox("📂 Type of Feedback", ["Bug Report", "Feature Request", "General Feedback"])
feedback = st.text_area("📝 Your Feedback")
submitted = st.form_submit_button("✅ Submit")
if submitted:
if not name or not email or not feedback:
st.error("❌ Please fill in all the fields.")
else:
# Here you can implement logic to store feedback, e.g., in a database or send via email
# For demonstration, we'll print to the console
print(f"Feedback from {name} ({email}): {feedback_type} - {feedback}")
st.success("✅ Thank you for your feedback!")
def gamification_module():
st.header("🏆 Gamification and Achievements")
st.write("""
Stay motivated by earning badges and tracking your progress!
""")
# Initialize database
init_db()
# Example achievements
applications = fetch_applications()
num_apps = len(applications)
achievements = {
"First Application": num_apps >= 1,
"5 Applications": num_apps >= 5,
"10 Applications": num_apps >= 10,
"Resume Optimized": any(app['Skills'] for app in applications),
"Interview Scheduled": any(app['Status'] == 'Interviewing' for app in applications)
}
for achievement, earned in achievements.items():
if earned:
st.success(f"🎉 {achievement}")
else:
st.info(f"🔜 {achievement}")
# Progress Bar
progress = min(num_apps / 10, 1.0) # Ensure progress is between 0.0 and 1.0
st.write("**Overall Progress:**")
st.progress(progress)
st.write(f"{progress * 100:.0f}% complete")
def resource_library_page():
st.header("📚 Resource Library")
st.write("""
Access a collection of templates and guides to enhance your job search.
""")
resources = [
{
"title": "Resume Template",
"description": "A professional resume template in DOCX format.",
"file": "./resume_template.docx"
},
{
"title": "Cover Letter Template",
"description": "A customizable cover letter template.",
"file": "./cover_letter_template.docx"
},
{
"title": "Job Application Checklist",
"description": "Ensure you have all the necessary steps covered during your job search.",
"file": "./application_checklist.pdf"
}
]
for resource in resources:
st.markdown(f"### {resource['title']}")
st.write(resource['description'])
try:
with open(resource['file'], "rb") as file:
btn = st.download_button(
label="⬇️ Download",
data=file,
file_name=os.path.basename(resource['file']),
mime="application/octet-stream"
)
except FileNotFoundError:
st.error(f"❌ File {resource['file']} not found. Please ensure the file is in the correct directory.")
st.write("---")
def success_stories_page():
st.header("🌟 Success Stories")
st.write("""
Hear from our users who have successfully landed their dream jobs with our assistance!
""")
# Example testimonials
testimonials = [
{
"name": "Rahul Sharma",
"position": "Data Scientist at TechCorp",
"testimonial": "This app transformed my job search process. The resume analysis and personalized emails were game-changers!",
"image": "images/user1.jpg" # Replace with actual image paths
},
{
"name": "Priya Mehta",
"position": "Machine Learning Engineer at InnovateX",
"testimonial": "The interview preparation module helped me ace my interviews with confidence. Highly recommended!",
"image": "images/user2.jpg"
}
]
for user in testimonials:
col1, col2 = st.columns([1, 3])
with col1:
try:
st.image(user["image"], width=100)
except:
st.write("")
with col2:
st.write(f"**{user['name']}**")
st.write(f"*{user['position']}*")
st.write(f"\"{user['testimonial']}\"")
st.write("---")
def chatbot_support_page():
st.header("🤖 AI-Powered Chatbot Support")
st.write("""
Have questions or need assistance? Chat with our AI-powered assistant!
""")
# Initialize session state for chatbot
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
# User input
user_input = st.text_input("🗨️ You:", key="user_input")
if st.button("Send"):
if user_input:
# Append user message to chat history
st.session_state['chat_history'].append({"message": user_input, "is_user": True})
prompt = f"""
You are a helpful assistant for a Job Application Assistant app. Answer the user's query based on the following context:
{user_input}
"""
try:
# Invoke the LLM to get a response
response = llm.invoke(prompt)
assistant_message = response.content.strip()
# Append assistant response to chat history
st.session_state['chat_history'].append({"message": assistant_message, "is_user": False})
except Exception as e:
error_message = "❌ Sorry, I encountered an error while processing your request."
st.session_state['chat_history'].append({"message": error_message, "is_user": False})
st.error(f"❌ Error in chatbot: {e}")
# Display chat history using streamlit-chat
for chat in st.session_state['chat_history']:
if chat['is_user']:
message(chat['message'], is_user=True, avatar_style="thumbs")
else:
message(chat['message'], is_user=False, avatar_style="bottts")
def help_page():
st.header("❓ Help & FAQ")
with st.expander("🛠️ How do I generate a cover letter?"):
st.write("""
To generate a cover letter, navigate to the **Cover Letter Generator** section, enter the job link, upload your resume, and click on **Generate Cover Letter**.
""")
with st.expander("📋 How do I track my applications?"):
st.write("""
Use the **Application Tracking Dashboard** to add new applications, update their status, and monitor deadlines.
""")
with st.expander("📄 How can I optimize my resume?"):
st.write("""
Upload your resume in the **Resume Analysis** section to extract skills and receive optimization suggestions.
""")
with st.expander("📥 How do I import my applications?"):
st.write("""
In the **Application Tracking Dashboard**, use the **Import Applications** section to upload a CSV file containing your applications. Ensure the CSV has the required columns.
""")
with st.expander("🗣️ How do I provide feedback?"):
st.write("""
Navigate to the **Feedback and Continuous Improvement** section, fill out the form, and submit your feedback.
""")
# -------------------------------
# Main App Function
# -------------------------------
def main_app():
# Apply a consistent theme or style
st.markdown(
"""
<style>
.reportview-container {
background-color: #f5f5f5;
}
.sidebar .sidebar-content {
background-image: linear-gradient(#2e7bcf, #2e7bcf);
color: white;
}
</style>
""",
unsafe_allow_html=True
)
# Sidebar Navigation using streamlit_option_menu
with st.sidebar:
selected = option_menu(
menu_title="📂 Main Menu",
options=["Email Generator", "Cover Letter Generator", "Resume Analysis", "Application Tracking",
"Job Recommendations", "Labor Market Insights", "Interview Preparation", "Personalized Learning Paths",
"Networking Opportunities", "Feedback", "Gamification", "Resource Library",
"Success Stories", "Chatbot Support", "Help"],
icons=["envelope", "file-earmark-text", "file-person", "briefcase",
"search", "bar-chart-line", "microphone", "book",
"people", "chat-left-text", "trophy", "collection",
"star", "robot", "question-circle"],
menu_icon="cast",
default_index=0,
styles={
"container": {"padding": "5!important", "background-color": "#2e7bcf"},
"icon": {"color": "white", "font-size": "18px"},
"nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px", "--hover-color": "#6b9eff"},
"nav-link-selected": {"background-color": "#1e5aab"},
}
)
# Route to the selected page
if selected == "Email Generator":
email_generator_page()
elif selected == "Cover Letter Generator":
cover_letter_generator_page()
elif selected == "Resume Analysis":
resume_analysis_page()
elif selected == "Application Tracking":
application_tracking_dashboard()
elif selected == "Job Recommendations":
job_recommendations_module()
elif selected == "Labor Market Insights":
labor_market_insights_module()
elif selected == "Interview Preparation":
interview_preparation_module()
elif selected == "Personalized Learning Paths":
personalized_learning_paths_module()
elif selected == "Networking Opportunities":
networking_opportunities_module()
elif selected == "Feedback":
feedback_and_improvement_module()
elif selected == "Gamification":
gamification_module()
elif selected == "Resource Library":
resource_library_page()
elif selected == "Success Stories":
success_stories_page()
elif selected == "Chatbot Support":
chatbot_support_page()
elif selected == "Help":
help_page()
if __name__ == "__main__":
main_app()
|