face-swap-app / app.py
AdiKhanOfficial's picture
Upload 4 files
1d6a80b verified
import os
from tempfile import NamedTemporaryFile
import streamlit as st
import cv2
import numpy as np
import insightface
from insightface.app import FaceAnalysis
import time
import requests
app = ''
swapper = ''
st.set_page_config(page_title="FaceSwap App by Adil Khan")
def download_model():
url = "https://cdn.adikhanofficial.com/python/insightface/models/inswapper_128.onnx"
filename = url.split('/')[-1]
filepath = os.path.join(os.path.dirname(__file__),filename)
if not os.path.exists(filepath):
print(f"Downloading {filename}...")
response = requests.get(url)
with open(filepath, 'wb') as file:
file.write(response.content)
print(f"{filename} downloaded successfully.")
else:
print(f"{filename} already exists in the directory.")
def swap_faces(target_image, target_face, source_face):
try:
return swapper.get(target_image, target_face, source_face, paste_back=True)
except Exception as e:
st.error(f"Error during swaping: {e}")
def image_faceswap_app():
st.title("Face Swapper for Image")
source_image = st.file_uploader("Upload Source Image", type=["jpg", "jpeg", "png"])
target_image = st.file_uploader("Upload Target Image", type=["jpg", "jpeg", "png"])
if source_image and target_image:
with st.spinner("Swapping... Please wait."):
try:
source_image = cv2.imdecode(np.frombuffer(source_image.read(), np.uint8), -1)
target_image = cv2.imdecode(np.frombuffer(target_image.read(), np.uint8), -1)
source_image = cv2.cvtColor(source_image, cv2.COLOR_BGR2RGB)
target_image = cv2.cvtColor(target_image, cv2.COLOR_BGR2RGB)
source_faces = app.get(source_image)
source_faces = sorted(source_faces, key=lambda x: x.bbox[0])
if len(source_faces) == 0:
raise ValueError("No faces found in the source image.")
source_face = source_faces[0]
target_faces = app.get(target_image)
target_faces = sorted(target_faces, key=lambda x: x.bbox[0])
if len(target_faces) == 0:
raise ValueError("No faces found in the target image.")
target_face = target_faces[0]
swapped_image = swap_faces(target_image, target_face, source_face)
message_placeholder = st.empty()
message_placeholder.success("Swapped Successfully!")
col1, col2, col3 = st.columns([1, 1, 1])
with col1:
st.image(source_image, caption="Source Image", use_column_width=True)
with col2:
st.image(target_image, caption="Target Image", use_column_width=True)
with col3:
st.image(swapped_image, caption="Swapped Image", use_column_width=True)
except Exception as e:
st.error(f"Error during image processing: {e}")
def process_video(source_img, video_path, output_video_path):
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
source_faces = app.get(source_img)
source_faces = sorted(source_faces, key=lambda x: x.bbox[0])
if len(source_faces) == 0:
raise ValueError("No faces found in the source image.")
source_face = source_faces[0]
progress_placeholder = st.empty()
frame_count = 0
start_time = time.time()
while True:
ret, frame = cap.read()
if not ret:
break
target_faces = app.get(frame)
target_faces = sorted(target_faces, key=lambda x: x.bbox[0])
if len(target_faces) > 0:
frame = swap_faces(frame, target_faces[0], source_face)
out.write(frame)
elapsed_time = time.time() - start_time
frames_per_second = frame_count / elapsed_time if elapsed_time > 0 else 0
remaining_time_seconds = max(0, (total_frames - frame_count) / frames_per_second) if frames_per_second > 0 else 0
remaining_minutes, remaining_seconds = divmod(remaining_time_seconds, 60)
elapsed_minutes, elapsed_seconds = divmod(elapsed_time, 60)
progress_placeholder.text(
f"Processed Frames: {frame_count}/{total_frames} | Elapsed Time: {int(elapsed_minutes)}m {int(elapsed_seconds)}s | Remaining Time: {int(remaining_minutes)}m {int(remaining_seconds)}s")
frame_count += 1
cap.release()
out.release()
except Exception as e:
st.error(f"Error during video processing: {e}")
def video_faceswap_app():
st.title("Face Swapper for Video")
source_image = st.file_uploader("Upload Source Face Image", type=["jpg", "jpeg", "png"])
if source_image is not None:
source_image = cv2.imdecode(np.frombuffer(source_image.read(), np.uint8), -1)
target_video = st.file_uploader("Upload Target Video", type=["mp4"])
if target_video is not None:
temp_video = NamedTemporaryFile(delete=False, suffix=".mp4")
temp_video.write(target_video.read())
output_video_path = os.path.splitext(temp_video.name)[0] + '_output.mp4'
status_placeholder = st.empty()
try:
with st.spinner("Processing... This may take a while."):
process_video(source_image, temp_video.name, output_video_path)
status_placeholder.success("Processing complete!")
st.subheader("Your video is ready:")
st.video(output_video_path)
except Exception as e:
st.error(f"Error during video processing: {e}")
def main():
app_selection = st.sidebar.radio("Select App", ("Image Face Swapping", "Video Face Swapping"))
if app_selection == "Image Face Swapping":
image_faceswap_app()
elif app_selection == "Video Face Swapping":
video_faceswap_app()
if __name__ == "__main__":
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
download_model() #download model if not available
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', root=os.path.dirname(__file__))
main()