AdiKhanOfficial commited on
Commit
1d6a80b
·
verified ·
1 Parent(s): f1620c2

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +99 -11
  2. app.py +145 -0
  3. requirements.txt +6 -0
  4. run.py +10 -0
README.md CHANGED
@@ -1,14 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- title: Face Swap App
3
- emoji: 🐠
4
- colorFrom: blue
5
- colorTo: blue
6
- sdk: streamlit
7
- sdk_version: 1.40.2
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- short_description: Image and Video Face Swaping App
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Face Swapping App by Adil Khan
3
+
4
+ Welcome to the **Face Swapping App** repository! This application leverages **Streamlit** and **OpenCV**, powered by **InsightFace**, to perform seamless face swapping on images and videos. Whether you want to swap faces in pictures or videos, this app provides a simple and efficient solution.
5
+
6
+ ---
7
+
8
+ ## Features
9
+
10
+ - **Image Face Swap**: Effortlessly swap faces between a source and target image.
11
+ - **Video Face Swap**: Apply face swapping across all frames of a target video using a source face image.
12
+ - **High Precision**: Built on **InsightFace** deep learning models for accurate face detection and swapping.
13
+ - **User-Friendly Interface**: Interact with the app through a sleek and intuitive **Streamlit** interface.
14
+
15
+ ---
16
+
17
+ ## How It Works
18
+
19
+ 1. **Image Face Swapping**:
20
+ - Detects faces in both the source and target images.
21
+ - Replaces the target face with the source face using the `inswapper_128.onnx` model.
22
+
23
+ 2. **Video Face Swapping**:
24
+ - Processes each frame of the video to detect and swap faces to match the source face.
25
+
26
+ ---
27
+
28
+ ## Installation
29
+
30
+ Follow these steps to get started:
31
+
32
+ 1. **Clone the repository**:
33
+ ```bash
34
+ git clone https://github.com/AdiKhanOfficial/face-swap-app.git
35
+ cd face-swap-app
36
+ ```
37
+
38
+ 2. **Install dependencies**:
39
+ ```bash
40
+ pip install -r requirements.txt
41
+ ```
42
+
43
+ 3. **Run the app**:
44
+ - For the Streamlit interface:
45
+ ```bash
46
+ streamlit run app.py
47
+ ```
48
+ - Or, simply run:
49
+ ```bash
50
+ python run.py
51
+ ```
52
+
53
+ ---
54
+
55
+ ## Requirements
56
+
57
+ - **Python 3.9**
58
+ - **Streamlit**
59
+ - **OpenCV**
60
+ - **InsightFace**
61
+
62
+ **Download Links**:
63
+ - [Python 3.9](https://www.python.org/downloads/release/python-390/)
64
+ - [InSwapper Model (`inswapper_128.onnx`)](https://cdn.adikhanofficial.com/python/insightface/models/inswapper_128.onnx)
65
+
66
  ---
67
+
68
+ ## Usage
69
+
70
+ 1. Open the application using Streamlit or `run.py`.
71
+ 2. Upload your **source face image** and the **target image/video**.
72
+ 3. Click the process button and let the magic happen!
73
+ 4. Once processing is complete, download the swapped images or videos directly from the app.
74
+
 
 
75
  ---
76
 
77
+ ## Results
78
+ <img src='https://raw.githubusercontent.com/AdiKhanOfficial/face_swapping/refs/heads/main/Results/Result.jpg' style='width:100%'/>
79
+
80
+ ---
81
+
82
+ ## Contributing
83
+
84
+ Contributions are welcome! If you’d like to improve the app or add new features, feel free to fork the repository, make your changes, and submit a pull request.
85
+
86
+ ---
87
+
88
+ ## License
89
+
90
+ This project is licensed under the [MIT License](LICENSE).
91
+
92
+ ---
93
+
94
+ ## About
95
+
96
+ Developed by **Adil Khan**.
97
+ For more projects and updates, visit my [GitHub Profile](https://github.com/AdiKhanOfficial) or follow me on social media.
98
+
99
+ ---
100
+
101
+ Feel free to reach out with any questions or feedback! 😊
102
+
app.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from tempfile import NamedTemporaryFile
3
+ import streamlit as st
4
+ import cv2
5
+ import numpy as np
6
+ import insightface
7
+ from insightface.app import FaceAnalysis
8
+ import time
9
+ import requests
10
+
11
+ app = ''
12
+ swapper = ''
13
+ st.set_page_config(page_title="FaceSwap App by Adil Khan")
14
+
15
+ def download_model():
16
+ url = "https://cdn.adikhanofficial.com/python/insightface/models/inswapper_128.onnx"
17
+ filename = url.split('/')[-1]
18
+ filepath = os.path.join(os.path.dirname(__file__),filename)
19
+
20
+ if not os.path.exists(filepath):
21
+ print(f"Downloading {filename}...")
22
+ response = requests.get(url)
23
+ with open(filepath, 'wb') as file:
24
+ file.write(response.content)
25
+ print(f"{filename} downloaded successfully.")
26
+ else:
27
+ print(f"{filename} already exists in the directory.")
28
+
29
+ def swap_faces(target_image, target_face, source_face):
30
+ try:
31
+ return swapper.get(target_image, target_face, source_face, paste_back=True)
32
+ except Exception as e:
33
+ st.error(f"Error during swaping: {e}")
34
+
35
+
36
+ def image_faceswap_app():
37
+ st.title("Face Swapper for Image")
38
+ source_image = st.file_uploader("Upload Source Image", type=["jpg", "jpeg", "png"])
39
+ target_image = st.file_uploader("Upload Target Image", type=["jpg", "jpeg", "png"])
40
+ if source_image and target_image:
41
+ with st.spinner("Swapping... Please wait."):
42
+ try:
43
+ source_image = cv2.imdecode(np.frombuffer(source_image.read(), np.uint8), -1)
44
+ target_image = cv2.imdecode(np.frombuffer(target_image.read(), np.uint8), -1)
45
+ source_image = cv2.cvtColor(source_image, cv2.COLOR_BGR2RGB)
46
+ target_image = cv2.cvtColor(target_image, cv2.COLOR_BGR2RGB)
47
+ source_faces = app.get(source_image)
48
+ source_faces = sorted(source_faces, key=lambda x: x.bbox[0])
49
+ if len(source_faces) == 0:
50
+ raise ValueError("No faces found in the source image.")
51
+ source_face = source_faces[0]
52
+ target_faces = app.get(target_image)
53
+ target_faces = sorted(target_faces, key=lambda x: x.bbox[0])
54
+ if len(target_faces) == 0:
55
+ raise ValueError("No faces found in the target image.")
56
+ target_face = target_faces[0]
57
+ swapped_image = swap_faces(target_image, target_face, source_face)
58
+ message_placeholder = st.empty()
59
+ message_placeholder.success("Swapped Successfully!")
60
+ col1, col2, col3 = st.columns([1, 1, 1])
61
+ with col1:
62
+ st.image(source_image, caption="Source Image", use_column_width=True)
63
+ with col2:
64
+ st.image(target_image, caption="Target Image", use_column_width=True)
65
+ with col3:
66
+ st.image(swapped_image, caption="Swapped Image", use_column_width=True)
67
+ except Exception as e:
68
+ st.error(f"Error during image processing: {e}")
69
+
70
+
71
+ def process_video(source_img, video_path, output_video_path):
72
+ try:
73
+ cap = cv2.VideoCapture(video_path)
74
+ fps = cap.get(cv2.CAP_PROP_FPS)
75
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
76
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
77
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
78
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
79
+ out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
80
+ source_faces = app.get(source_img)
81
+ source_faces = sorted(source_faces, key=lambda x: x.bbox[0])
82
+ if len(source_faces) == 0:
83
+ raise ValueError("No faces found in the source image.")
84
+ source_face = source_faces[0]
85
+ progress_placeholder = st.empty()
86
+ frame_count = 0
87
+ start_time = time.time()
88
+ while True:
89
+ ret, frame = cap.read()
90
+ if not ret:
91
+ break
92
+ target_faces = app.get(frame)
93
+ target_faces = sorted(target_faces, key=lambda x: x.bbox[0])
94
+ if len(target_faces) > 0:
95
+ frame = swap_faces(frame, target_faces[0], source_face)
96
+ out.write(frame)
97
+ elapsed_time = time.time() - start_time
98
+ frames_per_second = frame_count / elapsed_time if elapsed_time > 0 else 0
99
+ remaining_time_seconds = max(0, (total_frames - frame_count) / frames_per_second) if frames_per_second > 0 else 0
100
+ remaining_minutes, remaining_seconds = divmod(remaining_time_seconds, 60)
101
+ elapsed_minutes, elapsed_seconds = divmod(elapsed_time, 60)
102
+ progress_placeholder.text(
103
+ f"Processed Frames: {frame_count}/{total_frames} | Elapsed Time: {int(elapsed_minutes)}m {int(elapsed_seconds)}s | Remaining Time: {int(remaining_minutes)}m {int(remaining_seconds)}s")
104
+ frame_count += 1
105
+ cap.release()
106
+ out.release()
107
+ except Exception as e:
108
+ st.error(f"Error during video processing: {e}")
109
+
110
+
111
+ def video_faceswap_app():
112
+ st.title("Face Swapper for Video")
113
+ source_image = st.file_uploader("Upload Source Face Image", type=["jpg", "jpeg", "png"])
114
+ if source_image is not None:
115
+ source_image = cv2.imdecode(np.frombuffer(source_image.read(), np.uint8), -1)
116
+ target_video = st.file_uploader("Upload Target Video", type=["mp4"])
117
+ if target_video is not None:
118
+ temp_video = NamedTemporaryFile(delete=False, suffix=".mp4")
119
+ temp_video.write(target_video.read())
120
+ output_video_path = os.path.splitext(temp_video.name)[0] + '_output.mp4'
121
+ status_placeholder = st.empty()
122
+ try:
123
+ with st.spinner("Processing... This may take a while."):
124
+ process_video(source_image, temp_video.name, output_video_path)
125
+ status_placeholder.success("Processing complete!")
126
+ st.subheader("Your video is ready:")
127
+ st.video(output_video_path)
128
+ except Exception as e:
129
+ st.error(f"Error during video processing: {e}")
130
+
131
+
132
+ def main():
133
+ app_selection = st.sidebar.radio("Select App", ("Image Face Swapping", "Video Face Swapping"))
134
+ if app_selection == "Image Face Swapping":
135
+ image_faceswap_app()
136
+ elif app_selection == "Video Face Swapping":
137
+ video_faceswap_app()
138
+
139
+
140
+ if __name__ == "__main__":
141
+ app = FaceAnalysis(name='buffalo_l')
142
+ app.prepare(ctx_id=0, det_size=(640, 640))
143
+ download_model() #download model if not available
144
+ swapper = insightface.model_zoo.get_model('inswapper_128.onnx', root=os.path.dirname(__file__))
145
+ main()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ opencv-python
2
+ numpy
3
+ insightface
4
+ onnx
5
+ onnxruntime
6
+ streamlit
run.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import subprocess
4
+
5
+ # Define the path to the Streamlit app
6
+ script_path = os.path.join(os.path.dirname(__file__), 'app.py')
7
+
8
+ # Run the Streamlit app
9
+ if __name__ == "__main__":
10
+ subprocess.run([sys.executable, "-m", "streamlit", "run", script_path])