Abs6187's picture
Update app.py
347b7b4 verified
import os
import sys
import cv2
import gradio as gr
import numpy as np
import logging
from datetime import datetime
from pathlib import Path
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('app.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
project_root = os.path.dirname(os.path.abspath(__file__))
sys.path.append(project_root)
from ANPR_IND.scripts.charExtraction import CharExtraction
from ANPR_IND.scripts.bboxAnnotator import BBOXAnnotator
from ultralytics import YOLO
wPathPlat = os.path.join(project_root, "ANPR_IND", "licence_plat.pt")
wPathChar = os.path.join(project_root, "ANPR_IND", "licence_character.pt")
classList = np.array([
'A','B','C','D','E','F','G','H','I','J','K','L','M',
'N','O','P','Q','R','S','T','U','V','W','X','Y','Z',
'0','1','2','3','4','5','6','7','8','9'
])
sizePlat = (416, 200)
helmet_model_path = os.path.join(project_root, "Helmet-Detect-model", "best.pt")
required_files = [wPathPlat, wPathChar, helmet_model_path]
for file_path in required_files:
if not os.path.exists(file_path):
logger.error(f"Required model file not found: {file_path}")
raise FileNotFoundError(f"Required model file not found: {file_path}")
try:
logger.info("Initializing models...")
helmet_model = YOLO(helmet_model_path)
extractor = CharExtraction(
wPlatePath=wPathPlat,
wCharacterPath=wPathChar,
classList=classList,
sizePlate=sizePlat,
conf=0.5
)
annotator = BBOXAnnotator()
logger.info("Models initialized successfully")
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise
def process_image(image, conf=0.45):
start_time = datetime.now()
logger.info(f"Processing image with confidence threshold: {conf}")
if image is None:
logger.warning("No image provided")
return None, "No image provided", "No image provided"
try:
if isinstance(image, str):
if not os.path.exists(image):
raise FileNotFoundError(f"Image file not found: {image}")
image = cv2.imread(image)
if image is None:
raise ValueError("Failed to read image from the provided path.")
else:
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
logger.info("Running ANPR detection")
bbox, plateNum, confidence = extractor.predict(image=image, conf=conf)
anpr_image, plateNum = annotator.draw_bbox(image.copy(), bbox, plateNum)
plate_text = ", ".join(plateNum) if plateNum else "No plate detected"
logger.info(f"ANPR result: {plate_text}")
logger.info("Running helmet detection")
results = helmet_model(image)
helmet_detected = len(results.boxes) > 0
helmet_status = "Helmet Detected" if helmet_detected else "No Helmet Detected"
logger.info(f"Helmet detection result: {helmet_status}")
helmet_image = results.plot()
try:
combined_image = cv2.addWeighted(anpr_image, 0.5, helmet_image, 0.5, 0)
except Exception as e:
logger.warning(f"Failed to combine annotations: {str(e)}")
combined_image = helmet_image
if isinstance(combined_image, np.ndarray):
combined_image = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB)
processing_time = (datetime.now() - start_time).total_seconds()
logger.info(f"Processing completed in {processing_time:.2f} seconds")
return combined_image, plate_text, helmet_status
except Exception as e:
logger.error(f"Error processing image: {str(e)}")
return image, f"Error: {str(e)}", "Error processing image"
example_images = [
os.path.join(project_root, "ANPR_IND", "sample_image2.jpg"),
os.path.join(project_root, "ANPR_IND", "sample_image3.jpg"),
os.path.join(project_root, "ANPR_IND", "sample_image5.jpg"),
os.path.join(project_root, "ANPR_IND", "sample_image6.jpg")
]
for img_path in example_images.copy():
if not os.path.exists(img_path):
logger.warning(f"Example image not found: {img_path}")
example_images.remove(img_path)
def create_interface():
with gr.Blocks(title="Traffic Violation Detection System", theme=gr.themes.Soft()) as demo:
gr.Markdown("# Combined ANPR and Helmet Detection System")
gr.Markdown("Upload an image to detect license plates and check for helmet usage.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
conf_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.45,
label="Confidence Threshold"
)
detect_button = gr.Button("Detect", variant="primary")
with gr.Column():
output_image = gr.Image(label="Annotated Image")
plate_output = gr.Textbox(label="License Plate")
helmet_output = gr.Textbox(label="Helmet Status")
if example_images:
gr.Examples(
examples=[[img, 0.45] for img in example_images],
inputs=[input_image, conf_slider],
outputs=[output_image, plate_output, helmet_output],
fn=process_image,
cache_examples=True
)
detect_button.click(
fn=process_image,
inputs=[input_image, conf_slider],
outputs=[output_image, plate_output, helmet_output]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application...")
demo = create_interface()
demo.queue()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True
)
except Exception as e:
logger.error(f"Failed to start application: {str(e)}")
sys.exit(1)