Update app.py
Browse files
app.py
CHANGED
@@ -7,188 +7,164 @@ import logging
|
|
7 |
from datetime import datetime
|
8 |
from pathlib import Path
|
9 |
|
10 |
-
#Configure logging
|
11 |
logging.basicConfig(
|
12 |
-
level=logging.INFO,
|
13 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
14 |
-
handlers=[
|
15 |
-
logging.FileHandler('app.log'),
|
16 |
-
logging.StreamHandler()
|
17 |
-
]
|
18 |
)
|
19 |
-
logger = logging.getLogger(
|
20 |
|
21 |
-
|
22 |
-
project_root = os.path.dirname(os.path.abspath(file))
|
23 |
sys.path.append(project_root)
|
24 |
|
25 |
-
#Import custom modules and models
|
26 |
from ANPR_IND.scripts.charExtraction import CharExtraction
|
27 |
from ANPR_IND.scripts.bboxAnnotator import BBOXAnnotator
|
28 |
from ultralytics import YOLO
|
29 |
|
30 |
-
#Initialize ANPR models and classes
|
31 |
wPathPlat = os.path.join(project_root, "ANPR_IND", "licence_plat.pt")
|
32 |
wPathChar = os.path.join(project_root, "ANPR_IND", "licence_character.pt")
|
33 |
classList = np.array([
|
34 |
-
'A','B','C','D','E','F','G','H','I','J','K','L','M',
|
35 |
-
'N','O','P','Q','R','S','T','U','V','W','X','Y','Z',
|
36 |
-
'0','1','2','3','4','5','6','7','8','9'
|
37 |
])
|
38 |
sizePlat = (416, 200)
|
39 |
|
40 |
-
#Initialize Helmet Detection model path
|
41 |
helmet_model_path = os.path.join(project_root, "Helmet-Detect-model", "best.pt")
|
42 |
|
43 |
-
#Verify that the required model files exist
|
44 |
required_files = [wPathPlat, wPathChar, helmet_model_path]
|
45 |
for file_path in required_files:
|
46 |
-
if not os.path.exists(file_path):
|
47 |
-
logger.error(f"Required model file not found: {file_path}")
|
48 |
-
raise FileNotFoundError(f"Required model file not found: {file_path}")
|
49 |
|
50 |
-
#Initialize models
|
51 |
try:
|
52 |
-
logger.info("Initializing models...")
|
53 |
-
helmet_model = YOLO(helmet_model_path)
|
54 |
-
extractor = CharExtraction(
|
55 |
-
wPlatePath=wPathPlat,
|
56 |
-
wCharacterPath=wPathChar,
|
57 |
-
classList=classList,
|
58 |
-
sizePlate=sizePlat,
|
59 |
-
conf=0.5
|
60 |
-
)
|
61 |
-
annotator = BBOXAnnotator()
|
62 |
-
logger.info("Models initialized successfully")
|
63 |
except Exception as e:
|
64 |
-
logger.error(f"Error initializing models: {str(e)}")
|
65 |
-
raise
|
66 |
|
67 |
def process_image(image, conf=0.45):
|
68 |
-
start_time = datetime.now()
|
69 |
-
logger.info(f"Processing image with confidence threshold: {conf}")
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
return None, "No image provided", "No image provided"
|
75 |
|
76 |
-
try:
|
77 |
-
# Convert PIL Image to OpenCV BGR format if necessary
|
78 |
-
if isinstance(image, str):
|
79 |
-
if not os.path.exists(image):
|
80 |
-
raise FileNotFoundError(f"Image file not found: {image}")
|
81 |
-
image = cv2.imread(image)
|
82 |
-
if image is None:
|
83 |
-
raise ValueError("Failed to read image from the provided path.")
|
84 |
-
else:
|
85 |
-
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
86 |
-
|
87 |
-
# Run ANPR detection
|
88 |
-
logger.info("Running ANPR detection")
|
89 |
-
bbox, plateNum, confidence = extractor.predict(image=image, conf=conf)
|
90 |
-
anpr_image, plateNum = annotator.draw_bbox(image.copy(), bbox, plateNum)
|
91 |
-
plate_text = ", ".join(plateNum) if plateNum else "No plate detected"
|
92 |
-
logger.info(f"ANPR result: {plate_text}")
|
93 |
-
|
94 |
-
# Run Helmet detection
|
95 |
-
logger.info("Running helmet detection")
|
96 |
-
results = helmet_model(image)
|
97 |
-
# Ensure accessing the correct results container; the first element usually holds the detection info
|
98 |
-
helmet_detected = len(results.boxes) > 0
|
99 |
-
helmet_status = "Helmet Detected" if helmet_detected else "No Helmet Detected"
|
100 |
-
logger.info(f"Helmet detection result: {helmet_status}")
|
101 |
-
|
102 |
-
# Retrieve annotated image from helmet detection
|
103 |
-
helmet_image = results.plot()
|
104 |
-
|
105 |
-
# Combine annotations from both detections
|
106 |
try:
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
except Exception as e:
|
109 |
-
logger.
|
110 |
-
|
111 |
-
|
112 |
-
# Convert image from BGR to RGB for proper display in Gradio
|
113 |
-
if isinstance(combined_image, np.ndarray):
|
114 |
-
combined_image = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB)
|
115 |
-
|
116 |
-
processing_time = (datetime.now() - start_time).total_seconds()
|
117 |
-
logger.info(f"Processing completed in {processing_time:.2f} seconds")
|
118 |
-
|
119 |
-
return combined_image, plate_text, helmet_status
|
120 |
-
|
121 |
-
except Exception as e:
|
122 |
-
logger.error(f"Error processing image: {str(e)}")
|
123 |
-
return image, f"Error: {str(e)}", "Error processing image"
|
124 |
-
#Create an array of example image paths
|
125 |
example_images = [
|
126 |
-
os.path.join(project_root, "ANPR_IND", "sample_image2.jpg"),
|
127 |
-
os.path.join(project_root, "ANPR_IND", "sample_image3.jpg"),
|
128 |
-
os.path.join(project_root, "ANPR_IND", "sample_image5.jpg"),
|
129 |
-
os.path.join(project_root, "ANPR_IND", "sample_image6.jpg")
|
130 |
]
|
131 |
|
132 |
-
#Verify example images exist, and remove any that aren't found
|
133 |
for img_path in example_images.copy():
|
134 |
-
if not os.path.exists(img_path):
|
135 |
-
logger.warning(f"Example image not found: {img_path}")
|
136 |
-
example_images.remove(img_path)
|
137 |
|
138 |
def create_interface():
|
139 |
-
with gr.Blocks(title="Traffic Violation Detection System", theme=gr.themes.Soft()) as demo:
|
140 |
-
gr.Markdown("# Combined ANPR and Helmet Detection System")
|
141 |
-
gr.Markdown("Upload an image to detect license plates and check for helmet usage.")
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
)
|
153 |
-
|
154 |
-
|
155 |
-
output_image = gr.Image(label="Annotated Image")
|
156 |
-
plate_output = gr.Textbox(label="License Plate")
|
157 |
-
helmet_output = gr.Textbox(label="Helmet Status")
|
158 |
-
|
159 |
-
# Configure example images if available
|
160 |
-
if example_images:
|
161 |
-
gr.Examples(
|
162 |
-
examples=[[img, 0.45] for img in example_images],
|
163 |
-
inputs=[input_image, conf_slider],
|
164 |
-
outputs=[output_image, plate_output, helmet_output],
|
165 |
fn=process_image,
|
166 |
-
|
|
|
167 |
)
|
168 |
-
|
169 |
-
# Set up the click event to trigger detection
|
170 |
-
detect_button.click(
|
171 |
-
fn=process_image,
|
172 |
-
inputs=[input_image, conf_slider],
|
173 |
-
outputs=[output_image, plate_output, helmet_output]
|
174 |
-
)
|
175 |
|
176 |
-
return demo
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
demo
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
)
|
192 |
-
except Exception as e:
|
193 |
-
logger.error(f"Failed to start application: {str(e)}")
|
194 |
-
sys.exit(1)
|
|
|
7 |
from datetime import datetime
|
8 |
from pathlib import Path
|
9 |
|
|
|
10 |
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
13 |
+
handlers=[
|
14 |
+
logging.FileHandler('app.log'),
|
15 |
+
logging.StreamHandler()
|
16 |
+
]
|
17 |
)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
|
20 |
+
project_root = os.path.dirname(os.path.abspath(__file__))
|
|
|
21 |
sys.path.append(project_root)
|
22 |
|
|
|
23 |
from ANPR_IND.scripts.charExtraction import CharExtraction
|
24 |
from ANPR_IND.scripts.bboxAnnotator import BBOXAnnotator
|
25 |
from ultralytics import YOLO
|
26 |
|
|
|
27 |
wPathPlat = os.path.join(project_root, "ANPR_IND", "licence_plat.pt")
|
28 |
wPathChar = os.path.join(project_root, "ANPR_IND", "licence_character.pt")
|
29 |
classList = np.array([
|
30 |
+
'A','B','C','D','E','F','G','H','I','J','K','L','M',
|
31 |
+
'N','O','P','Q','R','S','T','U','V','W','X','Y','Z',
|
32 |
+
'0','1','2','3','4','5','6','7','8','9'
|
33 |
])
|
34 |
sizePlat = (416, 200)
|
35 |
|
|
|
36 |
helmet_model_path = os.path.join(project_root, "Helmet-Detect-model", "best.pt")
|
37 |
|
|
|
38 |
required_files = [wPathPlat, wPathChar, helmet_model_path]
|
39 |
for file_path in required_files:
|
40 |
+
if not os.path.exists(file_path):
|
41 |
+
logger.error(f"Required model file not found: {file_path}")
|
42 |
+
raise FileNotFoundError(f"Required model file not found: {file_path}")
|
43 |
|
|
|
44 |
try:
|
45 |
+
logger.info("Initializing models...")
|
46 |
+
helmet_model = YOLO(helmet_model_path)
|
47 |
+
extractor = CharExtraction(
|
48 |
+
wPlatePath=wPathPlat,
|
49 |
+
wCharacterPath=wPathChar,
|
50 |
+
classList=classList,
|
51 |
+
sizePlate=sizePlat,
|
52 |
+
conf=0.5
|
53 |
+
)
|
54 |
+
annotator = BBOXAnnotator()
|
55 |
+
logger.info("Models initialized successfully")
|
56 |
except Exception as e:
|
57 |
+
logger.error(f"Error initializing models: {str(e)}")
|
58 |
+
raise
|
59 |
|
60 |
def process_image(image, conf=0.45):
|
61 |
+
start_time = datetime.now()
|
62 |
+
logger.info(f"Processing image with confidence threshold: {conf}")
|
63 |
|
64 |
+
if image is None:
|
65 |
+
logger.warning("No image provided")
|
66 |
+
return None, "No image provided", "No image provided"
|
|
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
try:
|
69 |
+
if isinstance(image, str):
|
70 |
+
if not os.path.exists(image):
|
71 |
+
raise FileNotFoundError(f"Image file not found: {image}")
|
72 |
+
image = cv2.imread(image)
|
73 |
+
if image is None:
|
74 |
+
raise ValueError("Failed to read image from the provided path.")
|
75 |
+
else:
|
76 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
77 |
+
|
78 |
+
logger.info("Running ANPR detection")
|
79 |
+
bbox, plateNum, confidence = extractor.predict(image=image, conf=conf)
|
80 |
+
anpr_image, plateNum = annotator.draw_bbox(image.copy(), bbox, plateNum)
|
81 |
+
plate_text = ", ".join(plateNum) if plateNum else "No plate detected"
|
82 |
+
logger.info(f"ANPR result: {plate_text}")
|
83 |
+
|
84 |
+
logger.info("Running helmet detection")
|
85 |
+
results = helmet_model(image)
|
86 |
+
helmet_detected = len(results.boxes) > 0
|
87 |
+
helmet_status = "Helmet Detected" if helmet_detected else "No Helmet Detected"
|
88 |
+
logger.info(f"Helmet detection result: {helmet_status}")
|
89 |
+
|
90 |
+
helmet_image = results.plot()
|
91 |
+
|
92 |
+
try:
|
93 |
+
combined_image = cv2.addWeighted(anpr_image, 0.5, helmet_image, 0.5, 0)
|
94 |
+
except Exception as e:
|
95 |
+
logger.warning(f"Failed to combine annotations: {str(e)}")
|
96 |
+
combined_image = helmet_image
|
97 |
+
|
98 |
+
if isinstance(combined_image, np.ndarray):
|
99 |
+
combined_image = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB)
|
100 |
+
|
101 |
+
processing_time = (datetime.now() - start_time).total_seconds()
|
102 |
+
logger.info(f"Processing completed in {processing_time:.2f} seconds")
|
103 |
+
|
104 |
+
return combined_image, plate_text, helmet_status
|
105 |
except Exception as e:
|
106 |
+
logger.error(f"Error processing image: {str(e)}")
|
107 |
+
return image, f"Error: {str(e)}", "Error processing image"
|
108 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
example_images = [
|
110 |
+
os.path.join(project_root, "ANPR_IND", "sample_image2.jpg"),
|
111 |
+
os.path.join(project_root, "ANPR_IND", "sample_image3.jpg"),
|
112 |
+
os.path.join(project_root, "ANPR_IND", "sample_image5.jpg"),
|
113 |
+
os.path.join(project_root, "ANPR_IND", "sample_image6.jpg")
|
114 |
]
|
115 |
|
|
|
116 |
for img_path in example_images.copy():
|
117 |
+
if not os.path.exists(img_path):
|
118 |
+
logger.warning(f"Example image not found: {img_path}")
|
119 |
+
example_images.remove(img_path)
|
120 |
|
121 |
def create_interface():
|
122 |
+
with gr.Blocks(title="Traffic Violation Detection System", theme=gr.themes.Soft()) as demo:
|
123 |
+
gr.Markdown("# Combined ANPR and Helmet Detection System")
|
124 |
+
gr.Markdown("Upload an image to detect license plates and check for helmet usage.")
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
with gr.Column():
|
128 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
129 |
+
conf_slider = gr.Slider(
|
130 |
+
minimum=0.1,
|
131 |
+
maximum=1.0,
|
132 |
+
value=0.45,
|
133 |
+
label="Confidence Threshold"
|
134 |
+
)
|
135 |
+
detect_button = gr.Button("Detect", variant="primary")
|
136 |
+
with gr.Column():
|
137 |
+
output_image = gr.Image(label="Annotated Image")
|
138 |
+
plate_output = gr.Textbox(label="License Plate")
|
139 |
+
helmet_output = gr.Textbox(label="Helmet Status")
|
140 |
+
|
141 |
+
if example_images:
|
142 |
+
gr.Examples(
|
143 |
+
examples=[[img, 0.45] for img in example_images],
|
144 |
+
inputs=[input_image, conf_slider],
|
145 |
+
outputs=[output_image, plate_output, helmet_output],
|
146 |
+
fn=process_image,
|
147 |
+
cache_examples=True
|
148 |
)
|
149 |
+
|
150 |
+
detect_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
fn=process_image,
|
152 |
+
inputs=[input_image, conf_slider],
|
153 |
+
outputs=[output_image, plate_output, helmet_output]
|
154 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
return demo
|
157 |
+
|
158 |
+
if __name__ == "__main__":
|
159 |
+
try:
|
160 |
+
logger.info("Starting application...")
|
161 |
+
demo = create_interface()
|
162 |
+
demo.queue()
|
163 |
+
demo.launch(
|
164 |
+
server_name="0.0.0.0",
|
165 |
+
server_port=7860,
|
166 |
+
debug=True
|
167 |
+
)
|
168 |
+
except Exception as e:
|
169 |
+
logger.error(f"Failed to start application: {str(e)}")
|
170 |
+
sys.exit(1)
|
|
|
|
|
|
|
|