Spaces:
Runtime error
Runtime error
""" | |
=============== | |
Degree Analysis | |
=============== | |
This example shows several ways to visualize the distribution of the degree of | |
nodes with two common techniques: a *degree-rank plot* and a | |
*degree histogram*. | |
In this example, a random Graph is generated with 100 nodes. The degree of | |
each node is determined, and a figure is generated showing three things: | |
1. The subgraph of connected components | |
2. The degree-rank plot for the Graph, and | |
3. The degree histogram | |
""" | |
import networkx as nx | |
import numpy as np | |
import matplotlib.pyplot as plt | |
G = nx.gnp_random_graph(100, 0.02, seed=10374196) | |
degree_sequence = sorted((d for n, d in G.degree()), reverse=True) | |
dmax = max(degree_sequence) | |
fig = plt.figure("Degree of a random graph", figsize=(8, 8)) | |
# Create a gridspec for adding subplots of different sizes | |
axgrid = fig.add_gridspec(5, 4) | |
ax0 = fig.add_subplot(axgrid[0:3, :]) | |
Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0]) | |
pos = nx.spring_layout(Gcc, seed=10396953) | |
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20) | |
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4) | |
ax0.set_title("Connected components of G") | |
ax0.set_axis_off() | |
ax1 = fig.add_subplot(axgrid[3:, :2]) | |
ax1.plot(degree_sequence, "b-", marker="o") | |
ax1.set_title("Degree Rank Plot") | |
ax1.set_ylabel("Degree") | |
ax1.set_xlabel("Rank") | |
ax2 = fig.add_subplot(axgrid[3:, 2:]) | |
ax2.bar(*np.unique(degree_sequence, return_counts=True)) | |
ax2.set_title("Degree histogram") | |
ax2.set_xlabel("Degree") | |
ax2.set_ylabel("# of Nodes") | |
fig.tight_layout() | |
plt.show() | |