AbeerTrial's picture
Duplicate from AbeerTrial/SOAPAssist
35b22df
"""SQL Structured Store."""
import json
from typing import Any, Dict, Optional, Sequence, Type
from sqlalchemy import Table
from gpt_index.data_structs.table import SQLStructTable
from gpt_index.indices.base import DOCUMENTS_INPUT, BaseGPTIndex
from gpt_index.indices.common.struct_store.schema import SQLContextContainer
from gpt_index.indices.common.struct_store.sql import SQLStructDatapointExtractor
from gpt_index.indices.query.base import BaseGPTIndexQuery
from gpt_index.indices.query.schema import QueryMode
from gpt_index.indices.query.struct_store.sql import (
GPTNLStructStoreIndexQuery,
GPTSQLStructStoreIndexQuery,
)
from gpt_index.indices.struct_store.base import BaseGPTStructStoreIndex
from gpt_index.indices.struct_store.container_builder import SQLContextContainerBuilder
from gpt_index.langchain_helpers.chain_wrapper import LLMPredictor
from gpt_index.langchain_helpers.sql_wrapper import SQLDatabase
from gpt_index.schema import BaseDocument
class GPTSQLStructStoreIndex(BaseGPTStructStoreIndex[SQLStructTable]):
"""Base GPT SQL Struct Store Index.
The GPTSQLStructStoreIndex is an index that uses a SQL database
under the hood. During index construction, the data can be inferred
from unstructured documents given a schema extract prompt,
or it can be pre-loaded in the database.
During query time, the user can either specify a raw SQL query
or a natural language query to retrieve their data.
Args:
documents (Optional[Sequence[DOCUMENTS_INPUT]]): Documents to index.
NOTE: in the SQL index, this is an optional field.
sql_database (Optional[SQLDatabase]): SQL database to use,
including table names to specify.
See :ref:`Ref-Struct-Store` for more details.
table_name (Optional[str]): Name of the table to use
for extracting data.
Either table_name or table must be specified.
table (Optional[Table]): SQLAlchemy Table object to use.
Specifying the Table object explicitly, instead of
the table name, allows you to pass in a view.
Either table_name or table must be specified.
sql_context_container (Optional[SQLContextContainer]): SQL context container.
an be generated from a SQLContextContainerBuilder.
See :ref:`Ref-Struct-Store` for more details.
"""
index_struct_cls = SQLStructTable
def __init__(
self,
documents: Optional[Sequence[DOCUMENTS_INPUT]] = None,
index_struct: Optional[SQLStructTable] = None,
llm_predictor: Optional[LLMPredictor] = None,
sql_database: Optional[SQLDatabase] = None,
table_name: Optional[str] = None,
table: Optional[Table] = None,
ref_doc_id_column: Optional[str] = None,
sql_context_container: Optional[SQLContextContainer] = None,
**kwargs: Any,
) -> None:
"""Initialize params."""
if sql_database is None:
raise ValueError("sql_database must be specified")
self.sql_database = sql_database
# needed here for data extractor
self._ref_doc_id_column = ref_doc_id_column
self._table_name = table_name
self._table = table
# if documents aren't specified, pass in a blank []
documents = documents or []
super().__init__(
documents=documents,
index_struct=index_struct,
llm_predictor=llm_predictor,
**kwargs,
)
# TODO: index_struct context_dict is deprecated,
# we're migrating storage of information to here.
if sql_context_container is None:
container_builder = SQLContextContainerBuilder(sql_database)
sql_context_container = container_builder.build_context_container()
self.sql_context_container = sql_context_container
def _build_index_from_documents(
self, documents: Sequence[BaseDocument]
) -> SQLStructTable:
"""Build index from documents."""
index_struct = self.index_struct_cls()
if len(documents) == 0:
return index_struct
else:
data_extractor = SQLStructDatapointExtractor(
self._llm_predictor,
self._text_splitter,
self.schema_extract_prompt,
self.output_parser,
self.sql_database,
table_name=self._table_name,
table=self._table,
ref_doc_id_column=self._ref_doc_id_column,
)
for d in documents:
data_extractor.insert_datapoint_from_document(d)
return index_struct
def _insert(self, document: BaseDocument, **insert_kwargs: Any) -> None:
"""Insert a document."""
data_extractor = SQLStructDatapointExtractor(
self._llm_predictor,
self._text_splitter,
self.schema_extract_prompt,
self.output_parser,
self.sql_database,
table_name=self._table_name,
table=self._table,
ref_doc_id_column=self._ref_doc_id_column,
)
data_extractor.insert_datapoint_from_document(document)
@classmethod
def get_query_map(self) -> Dict[str, Type[BaseGPTIndexQuery]]:
"""Get query map."""
return {
QueryMode.DEFAULT: GPTNLStructStoreIndexQuery,
QueryMode.SQL: GPTSQLStructStoreIndexQuery,
}
def _preprocess_query(self, mode: QueryMode, query_kwargs: Any) -> None:
"""Preprocess query.
This allows subclasses to pass in additional query kwargs
to query, for instance arguments that are shared between the
index and the query class. By default, this does nothing.
This also allows subclasses to do validation.
"""
super()._preprocess_query(mode, query_kwargs)
# pass along sql_database, table_name
query_kwargs["sql_database"] = self.sql_database
if "sql_context_container" not in query_kwargs:
query_kwargs["sql_context_container"] = self.sql_context_container
if mode == QueryMode.DEFAULT:
query_kwargs["ref_doc_id_column"] = self._ref_doc_id_column
@classmethod
def load_from_string(cls, index_string: str, **kwargs: Any) -> "BaseGPTIndex":
"""Load index from string (in JSON-format).
This method loads the index from a JSON string. The index data
structure itself is preserved completely. If the index is defined over
subindices, those subindices will also be preserved (and subindices of
those subindices, etc.).
NOTE: load_from_string should not be used for indices composed on top
of other indices. Please define a `ComposableGraph` and use
`save_to_string` and `load_from_string` on that instead.
Args:
index_string (str): The index string (in JSON-format).
Returns:
BaseGPTIndex: The loaded index.
"""
# NOTE: also getting deserialized in parent class,
# figure out how to deal with later
result_dict = json.loads(index_string)
sql_context_container = SQLContextContainer.from_dict(
result_dict["sql_context_container"]
)
result_obj = super().load_from_string(
index_string, sql_context_container=sql_context_container, **kwargs
)
return result_obj
def save_to_string(self, **save_kwargs: Any) -> str:
"""Save to string.
This method stores the index into a JSON string.
NOTE: save_to_string should not be used for indices composed on top
of other indices. Please define a `ComposableGraph` and use
`save_to_string` and `load_from_string` on that instead.
Returns:
str: The JSON string of the index.
"""
if self.docstore.contains_index_struct(
exclude_ids=[self.index_struct.get_doc_id()]
):
raise ValueError(
"Cannot call `save_to_string` on index if index is composed on top of "
"other indices. Please define a `ComposableGraph` and use "
"`save_to_string` and `load_from_string` on that instead."
)
out_dict: Dict[str, Any] = {
"index_struct_id": self.index_struct.get_doc_id(),
"docstore": self.docstore.serialize_to_dict(),
"sql_context_container": self.sql_context_container.to_dict(),
}
return json.dumps(out_dict, **save_kwargs)