Spaces:
Runtime error
Runtime error
"""Image parser. | |
Contains parsers for image files. | |
""" | |
import re | |
from pathlib import Path | |
from typing import Dict | |
from gpt_index.readers.file.base_parser import BaseParser | |
class ImageParser(BaseParser): | |
"""Image parser. | |
Extract text from images using DONUT. | |
""" | |
def _init_parser(self) -> Dict: | |
"""Init parser.""" | |
try: | |
import torch # noqa: F401 | |
except ImportError: | |
raise ImportError( | |
"install pytorch to use the model: " "`pip install torch`" | |
) | |
try: | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
except ImportError: | |
raise ImportError( | |
"transformers is required for using DONUT model: " | |
"`pip install transformers`" | |
) | |
try: | |
import sentencepiece # noqa: F401 | |
except ImportError: | |
raise ImportError( | |
"sentencepiece is required for using DONUT model: " | |
"`pip install sentencepiece`" | |
) | |
try: | |
from PIL import Image # noqa: F401 | |
except ImportError: | |
raise ImportError( | |
"PIL is required to read image files: " "`pip install Pillow`" | |
) | |
processor = DonutProcessor.from_pretrained( | |
"naver-clova-ix/donut-base-finetuned-cord-v2" | |
) | |
model = VisionEncoderDecoderModel.from_pretrained( | |
"naver-clova-ix/donut-base-finetuned-cord-v2" | |
) | |
return {"processor": processor, "model": model} | |
def parse_file(self, file: Path, errors: str = "ignore") -> str: | |
"""Parse file.""" | |
import torch | |
from PIL import Image | |
model = self.parser_config["model"] | |
processor = self.parser_config["processor"] | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# load document image | |
image = Image.open(file) | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
# prepare decoder inputs | |
task_prompt = "<s_cord-v2>" | |
decoder_input_ids = processor.tokenizer( | |
task_prompt, add_special_tokens=False, return_tensors="pt" | |
).input_ids | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
early_stopping=True, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=3, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace( | |
processor.tokenizer.pad_token, "" | |
) | |
# remove first task start token | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() | |
return sequence | |