File size: 12,868 Bytes
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
"""Response builder class.

This class provides general functions for taking in a set of text
and generating a response.

Will support different modes, from 1) stuffing chunks into prompt,
2) create and refine separately over each chunk, 3) tree summarization.

"""
import logging
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Generator, List, Optional, Tuple, Union, cast

from gpt_index.data_structs.data_structs import Node
from gpt_index.indices.common.tree.base import GPTTreeIndexBuilder
from gpt_index.indices.prompt_helper import PromptHelper
from gpt_index.indices.utils import get_sorted_node_list, truncate_text
from gpt_index.langchain_helpers.chain_wrapper import LLMPredictor
from gpt_index.prompts.prompts import QuestionAnswerPrompt, RefinePrompt, SummaryPrompt
from gpt_index.response.schema import SourceNode
from gpt_index.response.utils import get_response_text
from gpt_index.utils import temp_set_attrs

RESPONSE_TEXT_TYPE = Union[str, Generator]


class ResponseMode(str, Enum):
    """Response modes."""

    DEFAULT = "default"
    COMPACT = "compact"
    TREE_SUMMARIZE = "tree_summarize"
    NO_TEXT = "no_text"


@dataclass
class TextChunk:
    """Response chunk."""

    text: str
    # Whether this chunk is already a response
    is_answer: bool = False


class ResponseBuilder:
    """Response builder class."""

    def __init__(
        self,
        prompt_helper: PromptHelper,
        llm_predictor: LLMPredictor,
        text_qa_template: QuestionAnswerPrompt,
        refine_template: RefinePrompt,
        texts: Optional[List[TextChunk]] = None,
        nodes: Optional[List[Node]] = None,
        use_async: bool = False,
        streaming: bool = False,
    ) -> None:
        """Init params."""
        self.prompt_helper = prompt_helper
        self.llm_predictor = llm_predictor
        self.text_qa_template = text_qa_template
        self.refine_template = refine_template
        self._texts = texts or []
        nodes = nodes or []
        self.source_nodes: List[SourceNode] = SourceNode.from_nodes(nodes)
        self._use_async = use_async
        self._streaming = streaming

    def add_text_chunks(self, text_chunks: List[TextChunk]) -> None:
        """Add text chunk."""
        self._texts.extend(text_chunks)

    def reset(self) -> None:
        """Clear text chunks."""
        self._texts = []
        self.source_nodes = []

    def add_node_as_source(
        self, node: Node, similarity: Optional[float] = None
    ) -> None:
        """Add node."""
        self.source_nodes.append(SourceNode.from_node(node, similarity=similarity))

    def add_source_node(self, source_node: SourceNode) -> None:
        """Add source node directly."""
        self.source_nodes.append(source_node)

    def get_sources(self) -> List[SourceNode]:
        """Get sources."""
        return self.source_nodes

    def refine_response_single(
        self,
        response: RESPONSE_TEXT_TYPE,
        query_str: str,
        text_chunk: str,
    ) -> RESPONSE_TEXT_TYPE:
        """Refine response."""
        # TODO: consolidate with logic in response/schema.py
        if isinstance(response, Generator):
            response = get_response_text(response)

        fmt_text_chunk = truncate_text(text_chunk, 50)
        logging.debug(f"> Refine context: {fmt_text_chunk}")
        # NOTE: partial format refine template with query_str and existing_answer here
        refine_template = self.refine_template.partial_format(
            query_str=query_str, existing_answer=response
        )
        refine_text_splitter = self.prompt_helper.get_text_splitter_given_prompt(
            refine_template, 1
        )
        text_chunks = refine_text_splitter.split_text(text_chunk)
        for cur_text_chunk in text_chunks:
            if not self._streaming:
                response, _ = self.llm_predictor.predict(
                    refine_template,
                    context_msg=cur_text_chunk,
                )
            else:
                response, _ = self.llm_predictor.stream(
                    refine_template,
                    context_msg=cur_text_chunk,
                )
            logging.debug(f"> Refined response: {response}")
        return response

    def give_response_single(
        self,
        query_str: str,
        text_chunk: str,
    ) -> RESPONSE_TEXT_TYPE:
        """Give response given a query and a corresponding text chunk."""
        text_qa_template = self.text_qa_template.partial_format(query_str=query_str)
        qa_text_splitter = self.prompt_helper.get_text_splitter_given_prompt(
            text_qa_template, 1
        )
        text_chunks = qa_text_splitter.split_text(text_chunk)
        response: Optional[RESPONSE_TEXT_TYPE] = None
        # TODO: consolidate with loop in get_response_default
        for cur_text_chunk in text_chunks:
            if response is None and not self._streaming:
                response, _ = self.llm_predictor.predict(
                    text_qa_template,
                    context_str=cur_text_chunk,
                )
                logging.debug(f"> Initial response: {response}")
            elif response is None and self._streaming:
                response, _ = self.llm_predictor.stream(
                    text_qa_template,
                    context_str=cur_text_chunk,
                )
            else:
                response = self.refine_response_single(
                    cast(RESPONSE_TEXT_TYPE, response),
                    query_str,
                    cur_text_chunk,
                )
        if isinstance(response, str):
            response = response or "Empty Response"
        else:
            response = cast(Generator, response)
        return response

    def get_response_over_chunks(
        self,
        query_str: str,
        text_chunks: List[TextChunk],
        prev_response: Optional[str] = None,
    ) -> RESPONSE_TEXT_TYPE:
        """Give response over chunks."""
        prev_response_obj = cast(Optional[RESPONSE_TEXT_TYPE], prev_response)
        response: Optional[RESPONSE_TEXT_TYPE] = None
        for text_chunk in text_chunks:
            if prev_response_obj is None:
                # if this is the first chunk, and text chunk already
                # is an answer, then return it
                if text_chunk.is_answer:
                    response = text_chunk.text
                # otherwise give response
                else:
                    response = self.give_response_single(
                        query_str,
                        text_chunk.text,
                    )
            else:
                response = self.refine_response_single(
                    prev_response_obj, query_str, text_chunk.text
                )
            prev_response_obj = response
        if isinstance(response, str):
            response = response or "Empty Response"
        else:
            response = cast(Generator, response)
        return response

    def _get_response_default(
        self, query_str: str, prev_response: Optional[str]
    ) -> RESPONSE_TEXT_TYPE:
        return self.get_response_over_chunks(
            query_str, self._texts, prev_response=prev_response
        )

    def _get_response_compact(
        self, query_str: str, prev_response: Optional[str]
    ) -> RESPONSE_TEXT_TYPE:
        """Get compact response."""
        # use prompt helper to fix compact text_chunks under the prompt limitation
        max_prompt = self.prompt_helper.get_biggest_prompt(
            [self.text_qa_template, self.refine_template]
        )
        with temp_set_attrs(self.prompt_helper, use_chunk_size_limit=False):
            new_texts = self.prompt_helper.compact_text_chunks(
                max_prompt, [t.text for t in self._texts]
            )
            new_text_chunks = [TextChunk(text=t) for t in new_texts]
            response = self.get_response_over_chunks(
                query_str, new_text_chunks, prev_response=prev_response
            )
        return response

    def _get_tree_index_builder_and_nodes(
        self,
        summary_template: SummaryPrompt,
        query_str: str,
        num_children: int = 10,
    ) -> Tuple[GPTTreeIndexBuilder, Dict]:
        """Get tree index builder."""
        # first join all the text chunks into a single text
        all_text = "\n\n".join([t.text for t in self._texts])
        # then get text splitter
        text_splitter = self.prompt_helper.get_text_splitter_given_prompt(
            summary_template, num_children
        )
        text_chunks = text_splitter.split_text(all_text)
        all_nodes: Dict[int, Node] = {
            i: Node(text=t) for i, t in enumerate(text_chunks)
        }

        index_builder = GPTTreeIndexBuilder(
            num_children,
            summary_template,
            self.llm_predictor,
            self.prompt_helper,
            text_splitter,
            use_async=self._use_async,
        )
        return index_builder, all_nodes

    def _get_tree_response_over_root_nodes(
        self,
        query_str: str,
        prev_response: Optional[str],
        root_nodes: Dict[int, Node],
        text_qa_template: QuestionAnswerPrompt,
    ) -> RESPONSE_TEXT_TYPE:
        """Get response from tree builder over root nodes."""
        node_list = get_sorted_node_list(root_nodes)
        node_text = self.prompt_helper.get_text_from_nodes(
            node_list, prompt=text_qa_template
        )
        # NOTE: the final response could be a string or a stream
        response = self.get_response_over_chunks(
            query_str,
            [TextChunk(node_text)],
            prev_response=prev_response,
        )
        if isinstance(response, str):
            response = response or "Empty Response"
        return response

    def _get_response_tree_summarize(
        self,
        query_str: str,
        prev_response: Optional[str],
        num_children: int = 10,
    ) -> RESPONSE_TEXT_TYPE:
        """Get tree summarize response."""
        text_qa_template = self.text_qa_template.partial_format(query_str=query_str)
        summary_template = SummaryPrompt.from_prompt(text_qa_template)

        index_builder, all_nodes = self._get_tree_index_builder_and_nodes(
            summary_template, query_str, num_children
        )
        root_nodes = index_builder.build_index_from_nodes(all_nodes, all_nodes)
        return self._get_tree_response_over_root_nodes(
            query_str, prev_response, root_nodes, text_qa_template
        )

    async def _aget_response_tree_summarize(
        self,
        query_str: str,
        prev_response: Optional[str],
        num_children: int = 10,
    ) -> RESPONSE_TEXT_TYPE:
        """Get tree summarize response."""
        text_qa_template = self.text_qa_template.partial_format(query_str=query_str)
        summary_template = SummaryPrompt.from_prompt(text_qa_template)

        index_builder, all_nodes = self._get_tree_index_builder_and_nodes(
            summary_template, query_str, num_children
        )
        root_nodes = await index_builder.abuild_index_from_nodes(all_nodes, all_nodes)
        return self._get_tree_response_over_root_nodes(
            query_str, prev_response, root_nodes, text_qa_template
        )

    def get_response(
        self,
        query_str: str,
        prev_response: Optional[str] = None,
        mode: ResponseMode = ResponseMode.DEFAULT,
        **response_kwargs: Any,
    ) -> RESPONSE_TEXT_TYPE:
        """Get response."""
        if mode == ResponseMode.DEFAULT:
            return self._get_response_default(query_str, prev_response)
        elif mode == ResponseMode.COMPACT:
            return self._get_response_compact(query_str, prev_response)
        elif mode == ResponseMode.TREE_SUMMARIZE:
            return self._get_response_tree_summarize(
                query_str, prev_response, **response_kwargs
            )
        else:
            raise ValueError(f"Invalid mode: {mode}")

    async def aget_response(
        self,
        query_str: str,
        prev_response: Optional[str] = None,
        mode: ResponseMode = ResponseMode.DEFAULT,
        **response_kwargs: Any,
    ) -> RESPONSE_TEXT_TYPE:
        """Get response."""
        # NOTE: for default and compact response modes, return synchronous version
        if mode == ResponseMode.DEFAULT:
            return self._get_response_default(query_str, prev_response)
        elif mode == ResponseMode.COMPACT:
            return self._get_response_compact(query_str, prev_response)
        elif mode == ResponseMode.TREE_SUMMARIZE:
            return await self._aget_response_tree_summarize(
                query_str, prev_response, **response_kwargs
            )
        else:
            raise ValueError(f"Invalid mode: {mode}")