File size: 8,043 Bytes
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""Vector-store specific query classes."""


from typing import Any, Dict, Optional

from gpt_index.data_structs.data_structs import IndexDict
from gpt_index.indices.query.vector_store.base import GPTVectorStoreIndexQuery
from gpt_index.vector_stores import (
    ChromaVectorStore,
    FaissVectorStore,
    OpensearchVectorStore,
    PineconeVectorStore,
    QdrantVectorStore,
    SimpleVectorStore,
    WeaviateVectorStore,
)
from gpt_index.vector_stores.opensearch import OpensearchVectorClient


class GPTSimpleVectorIndexQuery(GPTVectorStoreIndexQuery):
    """GPT simple vector index query.

    Args:
        embed_model (Optional[BaseEmbedding]): embedding model
        similarity_top_k (int): number of top k results to return
        simple_vector_store_data_dict: (Optional[dict]): simple vector store data dict,

    """

    def __init__(
        self,
        index_struct: IndexDict,
        simple_vector_store_data_dict: Optional[Dict] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        # TODO: this is a temporary hack to allow composable
        # indices to work for simple vector stores
        # Our composability framework at the moment only allows for storage
        # of index_struct, not vector_store. Therefore in order to
        # allow simple vector indices to be composed, we need to "infer"
        # the vector store from the index struct.
        # NOTE: the next refactor would be to allow users to pass in
        # the vector store during query-time. However this is currently
        # not complete in our composability framework because the configs
        # are keyed on index type, not index id (which means that users
        # can't pass in distinct vector stores for different subindices).
        # NOTE: composability on top of other vector stores (pinecone/weaviate)
        # was already broken in this form.
        if simple_vector_store_data_dict is None:
            if len(index_struct.embeddings_dict) > 0:
                simple_vector_store_data_dict = {
                    "embedding_dict": index_struct.embeddings_dict,
                }
                vector_store = SimpleVectorStore(
                    simple_vector_store_data_dict=simple_vector_store_data_dict
                )
            else:
                raise ValueError("Vector store is required for vector store query.")
        else:
            vector_store = SimpleVectorStore(
                simple_vector_store_data_dict=simple_vector_store_data_dict
            )
        super().__init__(index_struct=index_struct, vector_store=vector_store, **kwargs)


class GPTFaissIndexQuery(GPTVectorStoreIndexQuery):
    """GPT faiss vector index query.

    Args:
        embed_model (Optional[BaseEmbedding]): embedding model
        similarity_top_k (int): number of top k results to return
        faiss_index (faiss.Index): A Faiss Index object (required). Note: the index
            will be reset during index construction.

    """

    def __init__(
        self,
        index_struct: IndexDict,
        faiss_index: Optional[Any] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        if faiss_index is None:
            raise ValueError("faiss_index is required.")
        vector_store = FaissVectorStore(faiss_index)
        super().__init__(index_struct=index_struct, vector_store=vector_store, **kwargs)


class GPTPineconeIndexQuery(GPTVectorStoreIndexQuery):
    """GPT pinecone vector index query.

    Args:
        embed_model (Optional[BaseEmbedding]): embedding model
        similarity_top_k (int): number of top k results to return
        pinecone_index (Optional[pinecone.Index]): Pinecone index instance
        pinecone_kwargs (Optional[dict]): Pinecone index kwargs

    """

    def __init__(
        self,
        index_struct: IndexDict,
        pinecone_index: Optional[Any] = None,
        pinecone_kwargs: Optional[Dict] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        if pinecone_index is None and pinecone_kwargs is None:
            raise ValueError("pinecone_index or pinecone_kwargs is required.")
        vector_store = PineconeVectorStore(
            pinecone_index=pinecone_index, pinecone_kwargs=pinecone_kwargs
        )
        super().__init__(index_struct=index_struct, vector_store=vector_store, **kwargs)


class GPTWeaviateIndexQuery(GPTVectorStoreIndexQuery):
    """GPT Weaviate vector index query.

    Args:
        embed_model (Optional[BaseEmbedding]): embedding model
        similarity_top_k (int): number of top k results to return
        weaviate_client (Optional[Any]): Weaviate client instance
        class_prefix (Optional[str]): Weaviate class prefix

    """

    def __init__(
        self,
        index_struct: IndexDict,
        weaviate_client: Optional[Any] = None,
        class_prefix: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        if weaviate_client is None:
            raise ValueError("weaviate_client is required.")
        vector_store = WeaviateVectorStore(
            weaviate_client=weaviate_client, class_prefix=class_prefix
        )
        super().__init__(index_struct=index_struct, vector_store=vector_store, **kwargs)


class GPTQdrantIndexQuery(GPTVectorStoreIndexQuery):
    """GPT Qdrant vector index query.

    Args:
        embed_model (Optional[BaseEmbedding]): embedding model
        similarity_top_k (int): number of top k results to return
        client (Optional[Any]): QdrantClient instance from `qdrant-client` package
        collection_name: (Optional[str]): name of the Qdrant collection

    """

    def __init__(
        self,
        index_struct: IndexDict,
        client: Optional[Any] = None,
        collection_name: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        if client is None:
            raise ValueError("client is required.")
        if collection_name is None:
            raise ValueError("collection_name is required.")
        vector_store = QdrantVectorStore(client=client, collection_name=collection_name)
        super().__init__(index_struct=index_struct, vector_store=vector_store, **kwargs)


class GPTChromaIndexQuery(GPTVectorStoreIndexQuery):
    """GPT Chroma vector index query.

    Args:
        text_qa_template (Optional[QuestionAnswerPrompt]): A Question-Answer Prompt
            (see :ref:`Prompt-Templates`).
        embed_model (Optional[BaseEmbedding]): Embedding model to use for
            embedding similarity.
        chroma_collection (Optional[Any]): Collection instance from `chromadb` package.

    """

    def __init__(
        self,
        index_struct: IndexDict,
        chroma_collection: Optional[Any] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        if chroma_collection is None:
            raise ValueError("chroma_collection is required.")
        vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
        super().__init__(index_struct=index_struct, vector_store=vector_store, **kwargs)


class GPTOpensearchIndexQuery(GPTVectorStoreIndexQuery):
    """GPT Opensearch vector index query.

    Args:
        text_qa_template (Optional[QuestionAnswerPrompt]): A Question-Answer Prompt
            (see :ref:`Prompt-Templates`).
        embed_model (Optional[BaseEmbedding]): Embedding model to use for
            embedding similarity.
        client (Optional[OpensearchVectorClient]): Opensearch vector client.

    """

    def __init__(
        self,
        index_struct: IndexDict,
        client: Optional[OpensearchVectorClient] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        if client is None:
            raise ValueError("OpensearchVectorClient client is required.")
        vector_store = OpensearchVectorStore(client=client)
        super().__init__(index_struct=index_struct, vector_store=vector_store, **kwargs)