File size: 22,709 Bytes
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
"""Base index classes."""
import json
import logging
from abc import abstractmethod
from typing import (
    Any,
    Dict,
    Generic,
    List,
    Optional,
    Sequence,
    Type,
    TypeVar,
    Union,
    cast,
)

from gpt_index.data_structs.data_structs import IndexStruct, Node
from gpt_index.docstore import DOC_TYPE, DocumentStore
from gpt_index.embeddings.base import BaseEmbedding
from gpt_index.embeddings.openai import OpenAIEmbedding
from gpt_index.indices.node_utils import get_nodes_from_document
from gpt_index.indices.prompt_helper import PromptHelper
from gpt_index.indices.query.base import BaseGPTIndexQuery
from gpt_index.indices.query.query_runner import QueryRunner
from gpt_index.indices.query.query_transform import BaseQueryTransform
from gpt_index.indices.query.schema import QueryBundle, QueryConfig, QueryMode
from gpt_index.indices.registry import IndexRegistry
from gpt_index.langchain_helpers.chain_wrapper import LLMPredictor
from gpt_index.langchain_helpers.text_splitter import TextSplitter, TokenTextSplitter
from gpt_index.readers.schema.base import Document
from gpt_index.response.schema import Response
from gpt_index.schema import BaseDocument
from gpt_index.token_counter.token_counter import llm_token_counter

IS = TypeVar("IS", bound=IndexStruct)


DOCUMENTS_INPUT = Union[BaseDocument, "BaseGPTIndex"]


class BaseGPTIndex(Generic[IS]):
    """Base LlamaIndex.

    Args:
        documents (Optional[Sequence[BaseDocument]]): List of documents to
            build the index from.
        llm_predictor (LLMPredictor): Optional LLMPredictor object. If not provided,
            will use the default LLMPredictor (text-davinci-003)
        prompt_helper (PromptHelper): Optional PromptHelper object. If not provided,
            will use the default PromptHelper.
        chunk_size_limit (Optional[int]): Optional chunk size limit. If not provided,
            will use the default chunk size limit (4096 max input size).
        include_extra_info (bool): Optional bool. If True, extra info (i.e. metadata)
            of each Document will be prepended to its text to help with queries.
            Default is True.

    """

    index_struct_cls: Type[IS]

    def __init__(
        self,
        documents: Optional[Sequence[DOCUMENTS_INPUT]] = None,
        index_struct: Optional[IS] = None,
        llm_predictor: Optional[LLMPredictor] = None,
        embed_model: Optional[BaseEmbedding] = None,
        docstore: Optional[DocumentStore] = None,
        index_registry: Optional[IndexRegistry] = None,
        prompt_helper: Optional[PromptHelper] = None,
        text_splitter: Optional[TextSplitter] = None,
        chunk_size_limit: Optional[int] = None,
        include_extra_info: bool = True,
    ) -> None:
        """Initialize with parameters."""
        if index_struct is None and documents is None:
            raise ValueError("One of documents or index_struct must be provided.")
        if index_struct is not None and documents is not None:
            raise ValueError("Only one of documents or index_struct can be provided.")

        self._llm_predictor = llm_predictor or LLMPredictor()
        # NOTE: the embed_model isn't used in all indices
        self._embed_model = embed_model or OpenAIEmbedding()
        self._include_extra_info = include_extra_info

        # TODO: move out of base if we need custom params per index
        self._prompt_helper = prompt_helper or PromptHelper.from_llm_predictor(
            self._llm_predictor, chunk_size_limit=chunk_size_limit
        )
        self._text_splitter = text_splitter or self._build_fallback_text_splitter()

        # build index struct in the init function
        self._docstore = docstore or DocumentStore()
        self._index_registry = index_registry or IndexRegistry()

        if index_struct is not None:
            if not isinstance(index_struct, self.index_struct_cls):
                raise ValueError(
                    f"index_struct must be of type {self.index_struct_cls}"
                )
            self._index_struct = index_struct
        else:
            documents = cast(Sequence[DOCUMENTS_INPUT], documents)
            documents = self._process_documents(
                documents, self._docstore, self._index_registry
            )
            self._validate_documents(documents)
            # TODO: introduce document store outside __init__ function
            self._index_struct = self.build_index_from_documents(documents)
        # update index registry and docstore with index_struct
        self._update_index_registry_and_docstore()

    @property
    def prompt_helper(self) -> PromptHelper:
        """Get the prompt helper corresponding to the index."""
        return self._prompt_helper

    @property
    def docstore(self) -> DocumentStore:
        """Get the docstore corresponding to the index."""
        return self._docstore

    @property
    def index_registry(self) -> IndexRegistry:
        """Get the index registry corresponding to the index."""
        return self._index_registry

    @property
    def llm_predictor(self) -> LLMPredictor:
        """Get the llm predictor."""
        return self._llm_predictor

    @property
    def embed_model(self) -> BaseEmbedding:
        """Get the llm predictor."""
        return self._embed_model

    def _update_index_registry_and_docstore(self) -> None:
        """Update index registry and docstore."""
        # update index registry with current struct
        cur_type = self.index_struct_cls.get_type()
        self._index_registry.type_to_struct[cur_type] = self.index_struct_cls
        self._index_registry.type_to_query[cur_type] = self.get_query_map()

        # update docstore with current struct
        # NOTE: we call allow_update=True: in old versions of the docstore,
        # the index_struct was not stored in the docstore. whereas
        # in the new docstore, index_struct is stored in the docstore.
        # if we want to break BW compatibility, we can just remove this line
        # and only insert into docstore during index construction.
        self._docstore.add_documents([self.index_struct], allow_update=True)

    def _process_documents(
        self,
        documents: Sequence[DOCUMENTS_INPUT],
        docstore: DocumentStore,
        index_registry: IndexRegistry,
    ) -> List[BaseDocument]:
        """Process documents."""
        results: List[DOC_TYPE] = []
        for doc in documents:
            if isinstance(doc, BaseGPTIndex):
                # if user passed in another index, we need to do the following:
                # - update docstore with the docstore in the index
                # - validate that the index is in the docstore
                # - update the index registry

                index_registry.update(doc.index_registry)
                docstore.update_docstore(doc.docstore)
                # assert that the doc exists within the docstore
                sub_index_struct = doc.index_struct_with_text
                if not docstore.document_exists(sub_index_struct.get_doc_id()):
                    raise ValueError(
                        "The index struct of the sub-index must exist in the docstore. "
                        f"Invalid doc ID: {sub_index_struct.get_doc_id()}"
                    )
                results.append(sub_index_struct)
            elif isinstance(doc, Document):
                results.append(doc)
            else:
                raise ValueError(f"Invalid document type: {type(doc)}.")
        return cast(List[BaseDocument], results)

    def _validate_documents(self, documents: Sequence[BaseDocument]) -> None:
        """Validate documents."""
        for doc in documents:
            if not isinstance(doc, BaseDocument):
                raise ValueError("Documents must be of type BaseDocument.")

    @property
    def index_struct(self) -> IS:
        """Get the index struct."""
        return self._index_struct

    @property
    def index_struct_with_text(self) -> IS:
        """Get the index struct with text.

        If text not set, raise an error.
        For use when composing indices with other indices.

        """
        # make sure that we generate text for index struct
        if self._index_struct.text is None:
            # NOTE: set text to be empty string for now
            raise ValueError(
                "Index must have text property set in order "
                "to be composed with other indices. "
                "In order to set text, please run `index.set_text()`."
            )
        return self._index_struct

    def set_text(self, text: str) -> None:
        """Set summary text for index struct.

        This allows index_struct_with_text to be used to compose indices
        with other indices.

        """
        self._index_struct.text = text

    def set_extra_info(self, extra_info: Dict[str, Any]) -> None:
        """Set extra info (metadata) for index struct.

        If this index is used as a subindex for a parent index, the metadata
        will be propagated to all nodes derived from this subindex, in the
        parent index.

        """
        self._index_struct.extra_info = extra_info

    def set_doc_id(self, doc_id: str) -> None:
        """Set doc_id for index struct.

        This is used to uniquely identify the index struct in the docstore.
        If you wish to delete the index struct, you can use this doc_id.

        """
        old_doc_id = self._index_struct.get_doc_id()
        self._index_struct.doc_id = doc_id
        # Note: we also need to delete old doc_id, and update docstore
        self._docstore.delete_document(old_doc_id)
        self._docstore.add_documents([self._index_struct], allow_update=True)

    def get_doc_id(self) -> str:
        """Get doc_id for index struct.

        If doc_id not set, raise an error.

        """
        if self._index_struct.doc_id is None:
            raise ValueError("Index must have doc_id property set.")
        return self._index_struct.doc_id

    def _get_nodes_from_document(
        self,
        document: BaseDocument,
        start_idx: int = 0,
    ) -> List[Node]:
        return get_nodes_from_document(
            document=document,
            text_splitter=self._text_splitter,
            start_idx=start_idx,
            include_extra_info=self._include_extra_info,
        )

    def _build_fallback_text_splitter(self) -> TextSplitter:
        """Build the text splitter if not specified in args."""
        return TokenTextSplitter()

    @abstractmethod
    def _build_index_from_documents(self, documents: Sequence[BaseDocument]) -> IS:
        """Build the index from documents."""

    @llm_token_counter("build_index_from_documents")
    def build_index_from_documents(self, documents: Sequence[BaseDocument]) -> IS:
        """Build the index from documents."""
        return self._build_index_from_documents(documents)

    @abstractmethod
    def _insert(self, document: BaseDocument, **insert_kwargs: Any) -> None:
        """Insert a document."""

    @llm_token_counter("insert")
    def insert(self, document: DOCUMENTS_INPUT, **insert_kwargs: Any) -> None:
        """Insert a document.

        Args:
            document (Union[BaseDocument, BaseGPTIndex]): document to insert

        """
        processed_doc = self._process_documents(
            [document], self._docstore, self._index_registry
        )[0]
        self._validate_documents([processed_doc])
        self._insert(processed_doc, **insert_kwargs)

    @abstractmethod
    def _delete(self, doc_id: str, **delete_kwargs: Any) -> None:
        """Delete a document."""

    def delete(self, doc_id: str, **delete_kwargs: Any) -> None:
        """Delete a document from the index.

        All nodes in the index related to the index will be deleted.

        Args:
            doc_id (str): document id

        """
        logging.debug(f"> Deleting document: {doc_id}")
        self._delete(doc_id, **delete_kwargs)

    def update(self, document: DOCUMENTS_INPUT, **update_kwargs: Any) -> None:
        """Update a document.

        This is equivalent to deleting the document and then inserting it again.

        Args:
            document (Union[BaseDocument, BaseGPTIndex]): document to update
            insert_kwargs (Dict): kwargs to pass to insert
            delete_kwargs (Dict): kwargs to pass to delete

        """
        self.delete(document.get_doc_id(), **update_kwargs.pop("delete_kwargs", {}))
        self.insert(document, **update_kwargs.pop("insert_kwargs", {}))

    def _preprocess_query(self, mode: QueryMode, query_kwargs: Dict) -> None:
        """Preprocess query.

        This allows subclasses to pass in additional query kwargs
        to query, for instance arguments that are shared between the
        index and the query class. By default, this does nothing.
        This also allows subclasses to do validation.

        """
        pass

    def query(
        self,
        query_str: Union[str, QueryBundle],
        mode: str = QueryMode.DEFAULT,
        query_transform: Optional[BaseQueryTransform] = None,
        use_async: bool = False,
        **query_kwargs: Any,
    ) -> Response:
        """Answer a query.

        When `query` is called, we query the index with the given `mode` and
        `query_kwargs`. The `mode` determines the type of query to run, and
        `query_kwargs` are parameters that are specific to the query type.

        For a comprehensive documentation of available `mode` and `query_kwargs` to
        query a given index, please visit :ref:`Ref-Query`.


        """
        mode_enum = QueryMode(mode)
        if mode_enum == QueryMode.RECURSIVE:
            # TODO: deprecated, use ComposableGraph instead.
            if "query_configs" not in query_kwargs:
                raise ValueError("query_configs must be provided for recursive mode.")
            query_configs = query_kwargs["query_configs"]
            query_runner = QueryRunner(
                self._llm_predictor,
                self._prompt_helper,
                self._embed_model,
                self._docstore,
                self._index_registry,
                query_configs=query_configs,
                query_transform=query_transform,
                recursive=True,
                use_async=use_async,
            )
            return query_runner.query(query_str, self._index_struct)
        else:
            self._preprocess_query(mode_enum, query_kwargs)
            # TODO: pass in query config directly
            query_config = QueryConfig(
                index_struct_type=self._index_struct.get_type(),
                query_mode=mode_enum,
                query_kwargs=query_kwargs,
            )
            query_runner = QueryRunner(
                self._llm_predictor,
                self._prompt_helper,
                self._embed_model,
                self._docstore,
                self._index_registry,
                query_configs=[query_config],
                query_transform=query_transform,
                recursive=False,
                use_async=use_async,
            )
            return query_runner.query(query_str, self._index_struct)

    async def aquery(
        self,
        query_str: Union[str, QueryBundle],
        mode: str = QueryMode.DEFAULT,
        query_transform: Optional[BaseQueryTransform] = None,
        **query_kwargs: Any,
    ) -> Response:
        """Asynchronously answer a query.

        When `query` is called, we query the index with the given `mode` and
        `query_kwargs`. The `mode` determines the type of query to run, and
        `query_kwargs` are parameters that are specific to the query type.

        For a comprehensive documentation of available `mode` and `query_kwargs` to
        query a given index, please visit :ref:`Ref-Query`.


        """
        # TODO: currently we don't have async versions of all
        # underlying functions. Setting use_async=True
        # will cause async nesting errors because we assume
        # it's called in a synchronous setting.
        use_async = False

        mode_enum = QueryMode(mode)
        if mode_enum == QueryMode.RECURSIVE:
            # TODO: deprecated, use ComposableGraph instead.
            if "query_configs" not in query_kwargs:
                raise ValueError("query_configs must be provided for recursive mode.")
            query_configs = query_kwargs["query_configs"]
            query_runner = QueryRunner(
                self._llm_predictor,
                self._prompt_helper,
                self._embed_model,
                self._docstore,
                self._index_registry,
                query_configs=query_configs,
                query_transform=query_transform,
                recursive=True,
                use_async=use_async,
            )
            return await query_runner.aquery(query_str, self._index_struct)
        else:
            self._preprocess_query(mode_enum, query_kwargs)
            # TODO: pass in query config directly
            query_config = QueryConfig(
                index_struct_type=self._index_struct.get_type(),
                query_mode=mode_enum,
                query_kwargs=query_kwargs,
            )
            query_runner = QueryRunner(
                self._llm_predictor,
                self._prompt_helper,
                self._embed_model,
                self._docstore,
                self._index_registry,
                query_configs=[query_config],
                query_transform=query_transform,
                recursive=False,
                use_async=use_async,
            )
            return await query_runner.aquery(query_str, self._index_struct)

    @classmethod
    @abstractmethod
    def get_query_map(cls) -> Dict[str, Type[BaseGPTIndexQuery]]:
        """Get query map."""

    @classmethod
    def load_from_dict(
        cls, result_dict: Dict[str, Any], **kwargs: Any
    ) -> "BaseGPTIndex":
        """Load index from dict."""
        if "index_struct" in result_dict:
            index_struct = cls.index_struct_cls.from_dict(result_dict["index_struct"])
            index_struct_id = index_struct.get_doc_id()
        elif "index_struct_id" in result_dict:
            index_struct_id = result_dict["index_struct_id"]
        else:
            raise ValueError("index_struct or index_struct_id must be provided.")

        type_to_struct = {cls.index_struct_cls.get_type(): cls.index_struct_cls}

        # NOTE: index_struct can have multiple types for backwards compatibility,
        # map to same class
        type_to_struct = {
            index_type: cls.index_struct_cls
            for index_type in cls.index_struct_cls.get_types()
        }

        docstore = DocumentStore.load_from_dict(
            result_dict["docstore"],
            type_to_struct=type_to_struct,
        )
        if "index_struct_id" in result_dict:
            index_struct = docstore.get_document(index_struct_id)
        return cls(index_struct=index_struct, docstore=docstore, **kwargs)

    @classmethod
    def load_from_string(cls, index_string: str, **kwargs: Any) -> "BaseGPTIndex":
        """Load index from string (in JSON-format).

        This method loads the index from a JSON string. The index data
        structure itself is preserved completely. If the index is defined over
        subindices, those subindices will also be preserved (and subindices of
        those subindices, etc.).

        NOTE: load_from_string should not be used for indices composed on top
        of other indices. Please define a `ComposableGraph` and use
        `save_to_string` and `load_from_string` on that instead.

        Args:
            index_string (str): The index string (in JSON-format).

        Returns:
            BaseGPTIndex: The loaded index.

        """
        result_dict = json.loads(index_string)
        return cls.load_from_dict(result_dict, **kwargs)

    @classmethod
    def load_from_disk(cls, save_path: str, **kwargs: Any) -> "BaseGPTIndex":
        """Load index from disk.

        This method loads the index from a JSON file stored on disk. The index data
        structure itself is preserved completely. If the index is defined over
        subindices, those subindices will also be preserved (and subindices of
        those subindices, etc.).

        NOTE: load_from_disk should not be used for indices composed on top
        of other indices. Please define a `ComposableGraph` and use
        `save_to_disk` and `load_from_disk` on that instead.

        Args:
            save_path (str): The save_path of the file.

        Returns:
            BaseGPTIndex: The loaded index.

        """
        with open(save_path, "r") as f:
            file_contents = f.read()
            return cls.load_from_string(file_contents, **kwargs)

    def save_to_dict(self, **save_kwargs: Any) -> dict:
        """Save to dict."""
        if self.docstore.contains_index_struct(
            exclude_ids=[self.index_struct.get_doc_id()]
        ):
            raise ValueError(
                "Cannot call save index if index is composed on top of "
                "other indices. Please define a `ComposableGraph` and use "
                "`save_to_string` and `load_from_string` on that instead."
            )
        out_dict: Dict[str, Any] = {
            "index_struct_id": self.index_struct.get_doc_id(),
            "docstore": self.docstore.serialize_to_dict(),
        }
        return out_dict

    def save_to_string(self, **save_kwargs: Any) -> str:
        """Save to string.

        This method stores the index into a JSON string.

        NOTE: save_to_string should not be used for indices composed on top
        of other indices. Please define a `ComposableGraph` and use
        `save_to_string` and `load_from_string` on that instead.

        Returns:
            str: The JSON string of the index.

        """
        out_dict = self.save_to_dict(**save_kwargs)
        return json.dumps(out_dict, **save_kwargs)

    def save_to_disk(self, save_path: str, **save_kwargs: Any) -> None:
        """Save to file.

        This method stores the index into a JSON file stored on disk.

        NOTE: save_to_disk should not be used for indices composed on top
        of other indices. Please define a `ComposableGraph` and use
        `save_to_disk` and `load_from_disk` on that instead.

        Args:
            save_path (str): The save_path of the file.

        """
        index_string = self.save_to_string(**save_kwargs)
        with open(save_path, "w") as f:
            f.write(index_string)