File size: 8,148 Bytes
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9797c
35b22df
 
ce9797c
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9797c
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9797c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b22df
 
 
 
 
 
 
 
 
 
 
ce9797c
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9797c
 
35b22df
 
ce9797c
35b22df
ce9797c
35b22df
ce9797c
35b22df
 
 
ce9797c
35b22df
 
 
 
 
 
ce9797c
35b22df
ce9797c
 
 
 
 
35b22df
 
 
 
 
 
 
 
 
ce9797c
35b22df
 
 
 
ce9797c
35b22df
ce9797c
 
35b22df
ce9797c
 
 
35b22df
 
 
 
 
 
ce9797c
35b22df
 
ce9797c
 
 
 
 
 
 
 
 
 
 
 
35b22df
ce9797c
 
35b22df
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
from gpt_index import SimpleDirectoryReader, GPTSimpleVectorIndex, LLMPredictor, PromptHelper
from langchain.chat_models import ChatOpenAI
import gradio as gr
import speech_recognition as sr
import openai
import logging
import openai
from transformers import GPTJForCausalLM, GPT2Tokenizer
import numpy as np
import soundfile as sf
import tempfile
import os
import boto3
from gradio import Interface, components as gr
from gradio import Interface
import io
from scipy.io import wavfile
from google.cloud import speech
import pyttsx3
from nltk.tokenize import sent_tokenize
import nltk
nltk.download('punkt')
import langchain.schema
print(dir(langchain.schema))

logging.basicConfig(level=logging.INFO)
os.environ["OPENAI_API_KEY"]

def construct_index(directory_path):
    max_input_size = 4096
    num_outputs = 512
    max_chunk_overlap = 20
    chunk_size_limit = 2048

    prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)

    llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.7, model_name="gpt-3.5-turbo", max_tokens=num_outputs))

    documents = SimpleDirectoryReader(directory_path).load_data()

    index = GPTSimpleVectorIndex(documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper)

    index.save_to_disk('index.json')

    return index
    
def transcribe_audio(audio, service="Google"):
    sampling_rate, audio_data = audio  # unpack the tuple

    if audio_data.ndim > 1:
        audio_data = np.mean(audio_data, axis=1)

    print(type(audio_data), audio_data)

    fp = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
    fp.close()
    text = ""
    try:
        sf.write(fp.name, audio_data, sampling_rate)

        r = sr.Recognizer()
        with sr.AudioFile(fp.name) as source:
            audio_data = r.record(source)
            if service == "Google":
                try:
                    text = r.recognize_google(audio_data)
                except sr.RequestError as e:
                    print(f"Could not request results from Google Speech Recognition service; {e}")
                except sr.UnknownValueError:
                    print("Google Speech Recognition could not understand audio")
                    text = sent_tokenize(text)
            elif service == "Whisper":
                try:
                    with open(fp.name, "rb") as audio_file:
                        transcript = openai.Audio.transcribe("whisper-1", audio_file)

                    print(transcript)

                    conversation = [{"role": "user", "content": transcript["text"]}]

                    response = openai.ChatCompletion.create(
                        model="gpt-3.5-turbo",
                        messages=conversation
                    )

                    print(response)
                    text = transcript["text"]
                    
                except Exception as e:
                    print("Error with Whisper Service:", str(e))
                    text = sent_tokenize(text)                    
    finally:
        os.unlink(fp.name)

    return text
def get_gpt_response(input_text):
    try:
        # Check that input_text is not empty
        if not input_text:
            return "No input provided.", "", "", "", ""
    
        conversation = [
            {"role": "system", "content": "You are an experienced medical consultant who provides a SOAP note based on the conversation provided."},
            {"role": "user", "content": input_text}
        ]
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=conversation
        )
        gpt_response = response['choices'][0]['message']['content']
    
        # Parse the GPT response into SOAP components
        if all(keyword in gpt_response for keyword in ["Subjective:", "Objective:", "Assessment:", "Plan:"]):
            s_index = gpt_response.find('Subjective:')
            o_index = gpt_response.find('Objective:')
            a_index = gpt_response.find('Assessment:')
            p_index = gpt_response.find('Plan:')
    
            subjective = gpt_response[s_index:o_index].replace('Subjective:', '').strip()
            objective = gpt_response[o_index:a_index].replace('Objective:', '').strip()
            assessment = gpt_response[a_index:p_index].replace('Assessment:', '').strip()
            plan = gpt_response[p_index:].replace('Plan:', '').strip()
    
            return subjective, objective, assessment, plan, ""
    
        else:
            return "", "", "", "", gpt_response
    except Exception as e:
        print(f"Error in get_gpt_response: {e}")
        return "", "", "", "", ""



def chatbot(input_text, input_voice, transcription_service, patient_name=None):
# Check if patient_name is in index
    index = GPTSimpleVectorIndex.load_from_disk('index.json')
    if patient_name:  # Only do the check if patient_name is not None and not an empty string
       patient_names = [doc['name'] for doc in index.documents]  # Assuming each document is a dictionary with a 'name' field
    if patient_name and patient_name not in patient_names:
        return "Patient not found in index.", "", "", "", "", "", "", "", "", "", "", input_text  # Fill the rest of the outputs with empty strings
    if input_voice is not None:
        input_text = transcribe_audio(input_voice, transcription_service)

    # Get a response from GPT-3.5-turbo
    gpt_subjective, gpt_objective, gpt_assessment, gpt_plan, gpt_general = get_gpt_response(input_text)

    index = GPTSimpleVectorIndex.load_from_disk('index.json')
    response_index = index.query(input_text, response_mode="compact")

    soap_response = response_index.response

    patient_name = soap_response.split(' ')[1] if 'Subjective:' in soap_response else 'General'
    patient_file_path = os.path.join('/home/user/app/Docs', f"{patient_name}.txt")

    if all(keyword in soap_response for keyword in ["Subjective:", "Objective:", "Assessment:", "Plan:"]):
        s_index = soap_response.find('Subjective:')
        o_index = soap_response.find('Objective:')
        a_index = soap_response.find('Assessment:')
        p_index = soap_response.find('Plan:')

        subjective = soap_response[s_index:o_index].replace('Subjective:', '').strip()
        objective = soap_response[o_index:a_index].replace('Objective:', '').strip()
        assessment = soap_response[a_index:p_index].replace('Assessment:', '').strip()
        plan = soap_response[p_index:].replace('Plan:', '').strip()

        with open(patient_file_path, "a") as f:
            f.write(f"Subjective: {subjective}\nObjective: {objective}\nAssessment: {assessment}\nPlan: {plan}\n\n")

        output = [subjective, objective, assessment, plan, ""]
    else:
        with open(patient_file_path, "a" , encoding='utf-8') as f:
            f.write(f"General: {soap_response}\n\n")

        output = ["", "", "", "", soap_response]

    return *output, gpt_subjective, gpt_objective, gpt_assessment, gpt_plan, gpt_general, input_text  # return the transcribed text and the GPT response
#return *output, gpt_subjective, gpt_objective, gpt_assessment, gpt_plan, output[4] + gpt_general, input_text(this to merge the general (none SOAP) from Index and GPT) 

from gradio import Interface
from gradio.inputs import Textbox, Audio, Radio
from gradio.outputs import Textbox

interface = Interface(
    fn=chatbot,
    inputs=[
        Textbox(label="Enter your text"),
        Audio(source="microphone", type="numpy", label="Speak Something"),
        Radio(["Google", "Whisper"], label="Choose a transcription service")
    ],
    outputs=[
    Textbox(label="Subjective"),
    Textbox(label="Objective"),
    Textbox(label="Assessment"),
    Textbox(label="Plan"),
    Textbox(label="General"),
    Textbox(label="GPT Subjective"),
    Textbox(label="GPT Objective"),
    Textbox(label="GPT Assessment"),
    Textbox(label="GPT Plan"),
    Textbox(label="GPT General"),
    Textbox(label="Transcribed Text"),  # window for the transcribed text
],

)
index = construct_index('/home/user/app/Docs')
interface.launch()