Spaces:
Runtime error
Runtime error
File size: 15,088 Bytes
35b22df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import copy
import json
import warnings
from collections import defaultdict, namedtuple
# noinspection PyProtectedMember
from dataclasses import (MISSING,
_is_dataclass_instance,
fields,
is_dataclass # type: ignore
)
from datetime import datetime, timezone
from decimal import Decimal
from enum import Enum
from typing import (Any, Collection, Mapping, Union, get_type_hints,
Tuple, TypeVar)
from uuid import UUID
from typing_inspect import is_union_type # type: ignore
from dataclasses_json import cfg
from dataclasses_json.utils import (_get_type_cons, _get_type_origin,
_handle_undefined_parameters_safe,
_is_collection, _is_mapping, _is_new_type,
_is_optional, _isinstance_safe,
_get_type_arg_param,
_get_type_args,
_NO_ARGS,
_issubclass_safe)
Json = Union[dict, list, str, int, float, bool, None]
confs = ['encoder', 'decoder', 'mm_field', 'letter_case', 'exclude']
FieldOverride = namedtuple('FieldOverride', confs)
class _ExtendedEncoder(json.JSONEncoder):
def default(self, o) -> Json:
result: Json
if _isinstance_safe(o, Collection):
if _isinstance_safe(o, Mapping):
result = dict(o)
else:
result = list(o)
elif _isinstance_safe(o, datetime):
result = o.timestamp()
elif _isinstance_safe(o, UUID):
result = str(o)
elif _isinstance_safe(o, Enum):
result = o.value
elif _isinstance_safe(o, Decimal):
result = str(o)
else:
result = json.JSONEncoder.default(self, o)
return result
def _user_overrides_or_exts(cls):
global_metadata = defaultdict(dict)
encoders = cfg.global_config.encoders
decoders = cfg.global_config.decoders
mm_fields = cfg.global_config.mm_fields
for field in fields(cls):
if field.type in encoders:
global_metadata[field.name]['encoder'] = encoders[field.type]
if field.type in decoders:
global_metadata[field.name]['decoder'] = decoders[field.type]
if field.type in mm_fields:
global_metadata[field.name]['mm_fields'] = mm_fields[field.type]
try:
cls_config = (cls.dataclass_json_config
if cls.dataclass_json_config is not None else {})
except AttributeError:
cls_config = {}
overrides = {}
for field in fields(cls):
field_config = {}
# first apply global overrides or extensions
field_metadata = global_metadata[field.name]
if 'encoder' in field_metadata:
field_config['encoder'] = field_metadata['encoder']
if 'decoder' in field_metadata:
field_config['decoder'] = field_metadata['decoder']
if 'mm_field' in field_metadata:
field_config['mm_field'] = field_metadata['mm_field']
# then apply class-level overrides or extensions
field_config.update(cls_config)
# last apply field-level overrides or extensions
field_config.update(field.metadata.get('dataclasses_json', {}))
overrides[field.name] = FieldOverride(*map(field_config.get, confs))
return overrides
def _encode_json_type(value, default=_ExtendedEncoder().default):
if isinstance(value, Json.__args__): # type: ignore
if isinstance(value, list):
return [_encode_json_type(i) for i in value]
elif isinstance(value, dict):
return {k: _encode_json_type(v) for k, v in value.items()}
else:
return value
return default(value)
def _encode_overrides(kvs, overrides, encode_json=False):
override_kvs = {}
for k, v in kvs.items():
if k in overrides:
exclude = overrides[k].exclude
# If the exclude predicate returns true, the key should be
# excluded from encoding, so skip the rest of the loop
if exclude and exclude(v):
continue
letter_case = overrides[k].letter_case
original_key = k
k = letter_case(k) if letter_case is not None else k
encoder = overrides[original_key].encoder
v = encoder(v) if encoder is not None else v
if encode_json:
v = _encode_json_type(v)
override_kvs[k] = v
return override_kvs
def _decode_letter_case_overrides(field_names, overrides):
"""Override letter case of field names for encode/decode"""
names = {}
for field_name in field_names:
field_override = overrides.get(field_name)
if field_override is not None:
letter_case = field_override.letter_case
if letter_case is not None:
names[letter_case(field_name)] = field_name
return names
def _decode_dataclass(cls, kvs, infer_missing):
if _isinstance_safe(kvs, cls):
return kvs
overrides = _user_overrides_or_exts(cls)
kvs = {} if kvs is None and infer_missing else kvs
field_names = [field.name for field in fields(cls)]
decode_names = _decode_letter_case_overrides(field_names, overrides)
kvs = {decode_names.get(k, k): v for k, v in kvs.items()}
missing_fields = {field for field in fields(cls) if field.name not in kvs}
for field in missing_fields:
if field.default is not MISSING:
kvs[field.name] = field.default
elif field.default_factory is not MISSING:
kvs[field.name] = field.default_factory()
elif infer_missing:
kvs[field.name] = None
# Perform undefined parameter action
kvs = _handle_undefined_parameters_safe(cls, kvs, usage="from")
init_kwargs = {}
types = get_type_hints(cls)
for field in fields(cls):
# The field should be skipped from being added
# to init_kwargs as it's not intended as a constructor argument.
if not field.init:
continue
field_value = kvs[field.name]
field_type = types[field.name]
if field_value is None:
if not _is_optional(field_type):
warning = (
f"value of non-optional type {field.name} detected "
f"when decoding {cls.__name__}"
)
if infer_missing:
warnings.warn(
f"Missing {warning} and was defaulted to None by "
f"infer_missing=True. "
f"Set infer_missing=False (the default) to prevent "
f"this behavior.", RuntimeWarning
)
else:
warnings.warn(
f"`NoneType` object {warning}.", RuntimeWarning
)
init_kwargs[field.name] = field_value
continue
while True:
if not _is_new_type(field_type):
break
field_type = field_type.__supertype__
if (field.name in overrides
and overrides[field.name].decoder is not None):
# FIXME hack
if field_type is type(field_value):
init_kwargs[field.name] = field_value
else:
init_kwargs[field.name] = overrides[field.name].decoder(
field_value)
elif is_dataclass(field_type):
# FIXME this is a band-aid to deal with the value already being
# serialized when handling nested marshmallow schema
# proper fix is to investigate the marshmallow schema generation
# code
if is_dataclass(field_value):
value = field_value
else:
value = _decode_dataclass(field_type, field_value,
infer_missing)
init_kwargs[field.name] = value
elif _is_supported_generic(field_type) and field_type != str:
init_kwargs[field.name] = _decode_generic(field_type,
field_value,
infer_missing)
else:
init_kwargs[field.name] = _support_extended_types(field_type,
field_value)
return cls(**init_kwargs)
def _support_extended_types(field_type, field_value):
if _issubclass_safe(field_type, datetime):
# FIXME this is a hack to deal with mm already decoding
# the issue is we want to leverage mm fields' missing argument
# but need this for the object creation hook
if isinstance(field_value, datetime):
res = field_value
else:
tz = datetime.now(timezone.utc).astimezone().tzinfo
res = datetime.fromtimestamp(field_value, tz=tz)
elif _issubclass_safe(field_type, Decimal):
res = (field_value
if isinstance(field_value, Decimal)
else Decimal(field_value))
elif _issubclass_safe(field_type, UUID):
res = (field_value
if isinstance(field_value, UUID)
else UUID(field_value))
elif _issubclass_safe(field_type, (int, float, str, bool)):
res = (field_value
if isinstance(field_value, field_type)
else field_type(field_value))
else:
res = field_value
return res
def _is_supported_generic(type_):
if type_ is _NO_ARGS:
return False
not_str = not _issubclass_safe(type_, str)
is_enum = _issubclass_safe(type_, Enum)
return (not_str and _is_collection(type_)) or _is_optional(
type_) or is_union_type(type_) or is_enum
def _decode_generic(type_, value, infer_missing):
if value is None:
res = value
elif _issubclass_safe(type_, Enum):
# Convert to an Enum using the type as a constructor.
# Assumes a direct match is found.
res = type_(value)
# FIXME this is a hack to fix a deeper underlying issue. A refactor is due.
elif _is_collection(type_):
if _is_mapping(type_):
k_type, v_type = _get_type_args(type_, (Any, Any))
# a mapping type has `.keys()` and `.values()`
# (see collections.abc)
ks = _decode_dict_keys(k_type, value.keys(), infer_missing)
vs = _decode_items(v_type, value.values(), infer_missing)
xs = zip(ks, vs)
else:
xs = _decode_items(_get_type_arg_param(type_, 0),
value, infer_missing)
# get the constructor if using corresponding generic type in `typing`
# otherwise fallback on constructing using type_ itself
try:
res = _get_type_cons(type_)(xs)
except (TypeError, AttributeError):
res = type_(xs)
else: # Optional or Union
_args = _get_type_args(type_)
if _args is _NO_ARGS:
# Any, just accept
res = value
elif _is_optional(type_) and len(_args) == 2: # Optional
type_arg = _get_type_arg_param(type_, 0)
if is_dataclass(type_arg) or is_dataclass(value):
res = _decode_dataclass(type_arg, value, infer_missing)
elif _is_supported_generic(type_arg):
res = _decode_generic(type_arg, value, infer_missing)
else:
res = _support_extended_types(type_arg, value)
else: # Union (already decoded or unsupported 'from_json' used)
res = value
return res
def _decode_dict_keys(key_type, xs, infer_missing):
"""
Because JSON object keys must be strs, we need the extra step of decoding
them back into the user's chosen python type
"""
decode_function = key_type
# handle NoneType keys... it's weird to type a Dict as NoneType keys
# but it's valid...
# Issue #341 and PR #346:
# This is a special case for Python 3.7 and Python 3.8.
# By some reason, "unbound" dicts are counted
# as having key type parameter to be TypeVar('KT')
if key_type is None or key_type == Any or isinstance(key_type, TypeVar):
decode_function = key_type = (lambda x: x)
# handle a nested python dict that has tuples for keys. E.g. for
# Dict[Tuple[int], int], key_type will be typing.Tuple[int], but
# decode_function should be tuple, so map() doesn't break.
#
# Note: _get_type_origin() will return typing.Tuple for python
# 3.6 and tuple for 3.7 and higher.
elif _get_type_origin(key_type) in {tuple, Tuple}:
decode_function = tuple
key_type = key_type
return map(decode_function, _decode_items(key_type, xs, infer_missing))
def _decode_items(type_arg, xs, infer_missing):
"""
This is a tricky situation where we need to check both the annotated
type info (which is usually a type from `typing`) and check the
value's type directly using `type()`.
If the type_arg is a generic we can use the annotated type, but if the
type_arg is a typevar we need to extract the reified type information
hence the check of `is_dataclass(vs)`
"""
if is_dataclass(type_arg) or is_dataclass(xs):
items = (_decode_dataclass(type_arg, x, infer_missing)
for x in xs)
elif _is_supported_generic(type_arg):
items = (_decode_generic(type_arg, x, infer_missing) for x in xs)
else:
items = xs
return items
def _asdict(obj, encode_json=False):
"""
A re-implementation of `asdict` (based on the original in the `dataclasses`
source) to support arbitrary Collection and Mapping types.
"""
if _is_dataclass_instance(obj):
result = []
overrides = _user_overrides_or_exts(obj)
for field in fields(obj):
if overrides[field.name].encoder:
value = getattr(obj, field.name)
else:
value = _asdict(
getattr(obj, field.name),
encode_json=encode_json
)
result.append((field.name, value))
result = _handle_undefined_parameters_safe(cls=obj, kvs=dict(result),
usage="to")
return _encode_overrides(dict(result), _user_overrides_or_exts(obj),
encode_json=encode_json)
elif isinstance(obj, Mapping):
return dict((_asdict(k, encode_json=encode_json),
_asdict(v, encode_json=encode_json)) for k, v in
obj.items())
elif isinstance(obj, Collection) and not isinstance(obj, str) \
and not isinstance(obj, bytes):
return list(_asdict(v, encode_json=encode_json) for v in obj)
else:
return copy.deepcopy(obj)
|