File size: 22,785 Bytes
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
Metadata-Version: 2.1
Name: dataclasses-json
Version: 0.5.9
Summary: Easily serialize dataclasses to and from JSON
Home-page: https://github.com/lidatong/dataclasses-json
Author: lidatong
Author-email: [email protected]
License: MIT
Keywords: dataclasses json
Requires-Python: >=3.6
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: marshmallow (<4.0.0,>=3.3.0)
Requires-Dist: marshmallow-enum (<2.0.0,>=1.5.1)
Requires-Dist: typing-inspect (>=0.4.0)
Requires-Dist: dataclasses ; python_version == "3.6"
Provides-Extra: dev
Requires-Dist: pytest (>=7.2.0) ; extra == 'dev'
Requires-Dist: ipython ; extra == 'dev'
Requires-Dist: mypy (>=0.710) ; extra == 'dev'
Requires-Dist: hypothesis ; extra == 'dev'
Requires-Dist: portray ; extra == 'dev'
Requires-Dist: flake8 ; extra == 'dev'
Requires-Dist: simplejson ; extra == 'dev'
Requires-Dist: setuptools ; extra == 'dev'
Requires-Dist: wheel ; extra == 'dev'
Requires-Dist: twine ; extra == 'dev'
Requires-Dist: types-dataclasses ; (python_version == "3.6") and extra == 'dev'

# Dataclasses JSON

![](https://github.com/lidatong/dataclasses-json/workflows/dataclasses-json/badge.svg)

This library provides a simple API for encoding and decoding [dataclasses](https://docs.python.org/3/library/dataclasses.html) to and from JSON.

It's very easy to get started.

[README / Documentation website](https://lidatong.github.io/dataclasses-json). Features a navigation bar and search functionality, and should mirror this README exactly -- take a look!

## Quickstart

`pip install dataclasses-json`

```python
from dataclasses import dataclass
from dataclasses_json import dataclass_json


@dataclass_json
@dataclass
class Person:
    name: str


person = Person(name='lidatong')
person.to_json()  # '{"name": "lidatong"}' <- this is a string
person.to_dict()  # {'name': 'lidatong'} <- this is a dict
Person.from_json('{"name": "lidatong"}')  # Person(1)
Person.from_dict({'name': 'lidatong'})  # Person(1)

# You can also apply _schema validation_ using an alternative API
# This can be useful for "typed" Python code

Person.from_json('{"name": 42}')  # This is ok. 42 is not a `str`, but
                                  # dataclass creation does not validate types
Person.schema().loads('{"name": 42}')  # Error! Raises `ValidationError`
```

**What if you want to work with camelCase JSON?**

```python
# same imports as above, with the additional `LetterCase` import
from dataclasses import dataclass
from dataclasses_json import dataclass_json, LetterCase

@dataclass_json(letter_case=LetterCase.CAMEL)  # now all fields are encoded/decoded from camelCase
@dataclass
class ConfiguredSimpleExample:
    int_field: int

ConfiguredSimpleExample(1).to_json()  # {"intField": 1}
ConfiguredSimpleExample.from_json('{"intField": 1}')  # ConfiguredSimpleExample(1)
```

## Supported types

It's recursive (see caveats below), so you can easily work with nested dataclasses.
In addition to the supported types in the 
[py to JSON table](https://docs.python.org/3/library/json.html#py-to-json-table), this library supports the following:

- any arbitrary [Collection](https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection) type is supported.
[Mapping](https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping) types are encoded as JSON objects and `str` types as JSON strings. 
Any other Collection types are encoded into JSON arrays, but decoded into the original collection types.

- [datetime](https://docs.python.org/3/library/datetime.html#available-types) 
objects. `datetime` objects are encoded to `float` (JSON number) using 
[timestamp](https://docs.python.org/3/library/datetime.html#datetime.datetime.timestamp).
As specified in the `datetime` docs, if your `datetime` object is naive, it will 
assume your system local timezone when calling `.timestamp()`. JSON numbers 
corresponding to a `datetime` field in your dataclass are decoded 
into a datetime-aware object, with `tzinfo` set to your system local timezone.
Thus, if you encode a datetime-naive object, you will decode into a 
datetime-aware object. This is important, because encoding and decoding won't 
strictly be inverses. See [this section](#Overriding) if you want to override this default
behavior (for example, if you want to use ISO).

- [UUID](https://docs.python.org/3/library/uuid.html#uuid.UUID) objects. They 
are encoded as `str` (JSON string).

- [Decimal](https://docs.python.org/3/library/decimal.html) objects. They are
also encoded as `str`.

**The [latest release](https://github.com/lidatong/dataclasses-json/releases/latest) is compatible with both Python 3.7 and Python 3.6 (with the dataclasses backport).**

## Usage

#### Approach 1: Class decorator

```python
from dataclasses import dataclass
from dataclasses_json import dataclass_json

@dataclass_json
@dataclass
class Person:
    name: str

lidatong = Person('lidatong')

# Encoding to JSON
lidatong.to_json()  # '{"name": "lidatong"}'

# Decoding from JSON
Person.from_json('{"name": "lidatong"}')  # Person(name='lidatong')
```

Note that the `@dataclass_json` decorator must be stacked above the `@dataclass`
decorator (order matters!)

#### Approach 2: Inherit from a mixin

```python
from dataclasses import dataclass
from dataclasses_json import DataClassJsonMixin

@dataclass
class Person(DataClassJsonMixin):
    name: str

lidatong = Person('lidatong')

# A different example from Approach 1 above, but usage is the exact same
assert Person.from_json(lidatong.to_json()) == lidatong
```

Pick whichever approach suits your taste. Note that there is better support for
 the mixin approach when using _static analysis_ tools (e.g. linting, typing),
 but the differences in implementation will be invisible in _runtime_ usage.

## How do I...



### Use my dataclass with JSON arrays or objects?

```python
from dataclasses import dataclass
from dataclasses_json import dataclass_json

@dataclass_json
@dataclass
class Person:
    name: str
```

**Encode into a JSON array containing instances of my Data Class**

```python
people_json = [Person('lidatong')]
Person.schema().dumps(people_json, many=True)  # '[{"name": "lidatong"}]'
```

**Decode a JSON array containing instances of my Data Class**

```python
people_json = '[{"name": "lidatong"}]'
Person.schema().loads(people_json, many=True)  # [Person(name='lidatong')]
```

**Encode as part of a larger JSON object containing my Data Class (e.g. an HTTP 
request/response)**

```python
import json

response_dict = {
    'response': {
        'person': Person('lidatong').to_dict()
    }
}

response_json = json.dumps(response_dict)
```

In this case, we do two steps. First, we encode the dataclass into a 
**python dictionary** rather than a JSON string, using `.to_dict`. 

Second, we leverage the built-in `json.dumps` to serialize our `dataclass` into 
a JSON string.

**Decode as part of a larger JSON object containing my Data Class (e.g. an HTTP 
response)**

```python
import json

response_dict = json.loads('{"response": {"person": {"name": "lidatong"}}}')

person_dict = response_dict['response']

person = Person.from_dict(person_dict)
```

In a similar vein to encoding above, we leverage the built-in `json` module.

First, call `json.loads` to read the entire JSON object into a 
dictionary. We then access the key of the value containing the encoded dict of 
our `Person` that we want to decode (`response_dict['response']`).

Second, we load in the dictionary using `Person.from_dict`.


### Encode or decode into Python lists/dictionaries rather than JSON?

This can be by calling `.schema()` and then using the corresponding 
encoder/decoder methods, ie. `.load(...)`/`.dump(...)`.

**Encode into a single Python dictionary**

```python
person = Person('lidatong')
person.to_dict()  # {'name': 'lidatong'}
```

**Encode into a list of Python dictionaries**

```python
people = [Person('lidatong')]
Person.schema().dump(people, many=True)  # [{'name': 'lidatong'}]
```

**Decode a dictionary into a single dataclass instance**

```python
person_dict = {'name': 'lidatong'}
Person.from_dict(person_dict)  # Person(name='lidatong')
```

**Decode a list of dictionaries into a list of dataclass instances**

```python
people_dicts = [{"name": "lidatong"}]
Person.schema().load(people_dicts, many=True)  # [Person(name='lidatong')]
```

### Encode or decode from camelCase (or kebab-case)?

JSON letter case by convention is camelCase, in Python members are by convention snake_case.

You can configure it to encode/decode from other casing schemes at both the class level and the field level.

```python
from dataclasses import dataclass, field

from dataclasses_json import LetterCase, config, dataclass_json


# changing casing at the class level
@dataclass_json(letter_case=LetterCase.CAMEL)
@dataclass
class Person:
    given_name: str
    family_name: str
    
Person('Alice', 'Liddell').to_json()  # '{"givenName": "Alice"}'
Person.from_json('{"givenName": "Alice", "familyName": "Liddell"}')  # Person('Alice', 'Liddell')

# at the field level
@dataclass_json
@dataclass
class Person:
    given_name: str = field(metadata=config(letter_case=LetterCase.CAMEL))
    family_name: str
    
Person('Alice', 'Liddell').to_json()  # '{"givenName": "Alice"}'
# notice how the `family_name` field is still snake_case, because it wasn't configured above
Person.from_json('{"givenName": "Alice", "family_name": "Liddell"}')  # Person('Alice', 'Liddell')
```

**This library assumes your field follows the Python convention of snake_case naming.**
If your field is not `snake_case` to begin with and you attempt to parameterize `LetterCase`, 
the behavior of encoding/decoding is undefined (most likely it will result in subtle bugs).

### Encode or decode using a different name

```python
from dataclasses import dataclass, field

from dataclasses_json import config, dataclass_json

@dataclass_json
@dataclass
class Person:
    given_name: str = field(metadata=config(field_name="overriddenGivenName"))

Person(given_name="Alice")  # Person('Alice')
Person.from_json('{"overriddenGivenName": "Alice"}')  # Person('Alice')
Person('Alice').to_json()  # {"overriddenGivenName": "Alice"}
```

### Handle missing or optional field values when decoding?

By default, any fields in your dataclass that use `default` or 
`default_factory` will have the values filled with the provided default, if the
corresponding field is missing from the JSON you're decoding.

**Decode JSON with missing field**

```python
@dataclass_json
@dataclass
class Student:
    id: int
    name: str = 'student'

Student.from_json('{"id": 1}')  # Student(id=1, name='student')
```

Notice `from_json` filled the field `name` with the specified default 'student'
when it was missing from the JSON.

Sometimes you have fields that are typed as `Optional`, but you don't 
necessarily want to assign a default. In that case, you can use the 
`infer_missing` kwarg to make `from_json` infer the missing field value as `None`.

**Decode optional field without default**

```python
@dataclass_json
@dataclass
class Tutor:
    id: int
    student: Optional[Student] = None

Tutor.from_json('{"id": 1}')  # Tutor(id=1, student=None)
```

Personally I recommend you leverage dataclass defaults rather than using 
`infer_missing`, but if for some reason you need to decouple the behavior of 
JSON decoding from the field's default value, this will allow you to do so.


### Handle unknown / extraneous fields in JSON?

By default, it is up to the implementation what happens when a `json_dataclass` receives input parameters that are not defined.
(the `from_dict` method ignores them, when loading using `schema()` a ValidationError is raised.)
There are three ways to customize this behavior.

Assume you want to instantiate a dataclass with the following dictionary:
```python
dump_dict = {"endpoint": "some_api_endpoint", "data": {"foo": 1, "bar": "2"}, "undefined_field_name": [1, 2, 3]}
```

1. You can enforce to always raise an error by setting the `undefined` keyword to `Undefined.RAISE`
 (`'RAISE'` as a case-insensitive string works as well). Of course it works normally if you don't pass any undefined parameters.
    
```python
from dataclasses_json import Undefined

@dataclass_json(undefined=Undefined.RAISE)
@dataclass()
class ExactAPIDump:
    endpoint: str
    data: Dict[str, Any]

dump = ExactAPIDump.from_dict(dump_dict)  # raises UndefinedParameterError
```

2. You can simply ignore any undefined parameters by setting the `undefined` keyword to `Undefined.EXCLUDE`
 (`'EXCLUDE'` as a case-insensitive string works as well). Note that you will not be able to retrieve them using `to_dict`:
    
```python
from dataclasses_json import Undefined

@dataclass_json(undefined=Undefined.EXCLUDE)
@dataclass()
class DontCareAPIDump:
    endpoint: str
    data: Dict[str, Any]

dump = DontCareAPIDump.from_dict(dump_dict)  # DontCareAPIDump(endpoint='some_api_endpoint', data={'foo': 1, 'bar': '2'})
dump.to_dict()  # {"endpoint": "some_api_endpoint", "data": {"foo": 1, "bar": "2"}}
```

3. You can save them in a catch-all field and do whatever needs to be done later. Simply set the `undefined`
keyword to `Undefined.INCLUDE` (`'INCLUDE'` as a case-insensitive string works as well) and define a field
of type `CatchAll` where all unknown values will end up.
 This simply represents a dictionary that can hold anything. 
 If there are no undefined parameters, this will be an empty dictionary.
    
```python
from dataclasses_json import Undefined, CatchAll

@dataclass_json(undefined=Undefined.INCLUDE)
@dataclass()
class UnknownAPIDump:
    endpoint: str
    data: Dict[str, Any]
    unknown_things: CatchAll

dump = UnknownAPIDump.from_dict(dump_dict)  # UnknownAPIDump(endpoint='some_api_endpoint', data={'foo': 1, 'bar': '2'}, unknown_things={'undefined_field_name': [1, 2, 3]})
dump.to_dict()  # {'endpoint': 'some_api_endpoint', 'data': {'foo': 1, 'bar': '2'}, 'undefined_field_name': [1, 2, 3]}
```

Notes:
- When using `Undefined.INCLUDE`, an `UndefinedParameterError` will be raised if you don't specify
exactly one field of type `CatchAll`.
- Note that `LetterCase` does not affect values written into the `CatchAll` field, they will be as they are given.
- When specifying a default (or a default factory) for the the `CatchAll`-field, e.g. `unknown_things: CatchAll = None`, the default value will be used instead of an empty dict if there are no undefined parameters.
- Calling __init__ with non-keyword arguments resolves the arguments to the defined fields and writes everything else into the catch-all field.

4. All 3 options work as well using `schema().loads` and `schema().dumps`, as long as you don't overwrite it by specifying `schema(unknown=<a marshmallow value>)`.
marshmallow uses the same 3 keywords ['include', 'exclude', 'raise'](https://marshmallow.readthedocs.io/en/stable/quickstart.html#handling-unknown-fields).

5. All 3 operations work as well using `__init__`, e.g. `UnknownAPIDump(**dump_dict)` will **not** raise a `TypeError`, but write all unknown values to the field tagged as `CatchAll`.
   Classes tagged with `EXCLUDE` will also simply ignore unknown parameters. Note that classes tagged as `RAISE` still raise a `TypeError`, and **not** a `UndefinedParameterError` if supplied with unknown keywords.


### Override the default encode / decode / marshmallow field of a specific field?

See [Overriding](#Overriding)

### Handle recursive dataclasses?
Object hierarchies where fields are of the type that they are declared within require a small
type hinting trick to declare the forward reference.
```python
from typing import Optional
from dataclasses import dataclass
from dataclasses_json import dataclass_json

@dataclass_json
@dataclass
class Tree():
    value: str
    left: Optional['Tree']
    right: Optional['Tree']
```

Avoid using
```python
from __future__ import annotations
```
as it will cause problems with the way dataclasses_json accesses the type annotations.


## Marshmallow interop

Using the `dataclass_json` decorator or mixing in `DataClassJsonMixin` will
provide you with an additional method `.schema()`.

`.schema()` generates a schema exactly equivalent to manually creating a
marshmallow schema for your dataclass. You can reference the [marshmallow API docs](https://marshmallow.readthedocs.io/en/3.0/api_reference.html#schema)
to learn other ways you can use the schema returned by `.schema()`.

You can pass in the exact same arguments to `.schema()` that you would when
constructing a `PersonSchema` instance, e.g. `.schema(many=True)`, and they will
get passed through to the marshmallow schema.


```python
from dataclasses import dataclass
from dataclasses_json import dataclass_json

@dataclass_json
@dataclass
class Person:
    name: str

# You don't need to do this - it's generated for you by `.schema()`!
from marshmallow import Schema, fields

class PersonSchema(Schema):
    name = fields.Str()
```

Briefly, on what's going on under the hood in the above examples: calling 
`.schema()` will have this library generate a
[marshmallow schema]('https://marshmallow.readthedocs.io/en/3.0/api_reference.html#schema)
for you. It also fills in the corresponding object hook, so that marshmallow
will create an instance of your Data Class on `load` (e.g.
`Person.schema().load` returns a `Person`) rather than a `dict`, which it does
by default in marshmallow.

**Performance note**

`.schema()` is not cached (it generates the schema on every call), so if you
have a nested Data Class you may want to save the result to a variable to 
avoid re-generation of the schema on every usage.

```python
person_schema = Person.schema()
person_schema.dump(people, many=True)

# later in the code...

person_schema.dump(person)
```

## Overriding / Extending

#### Overriding

For example, you might want to encode/decode `datetime` objects using ISO format
rather than the default `timestamp`.

```python
from dataclasses import dataclass, field
from dataclasses_json import dataclass_json, config
from datetime import datetime
from marshmallow import fields

@dataclass_json
@dataclass
class DataClassWithIsoDatetime:
    created_at: datetime = field(
        metadata=config(
            encoder=datetime.isoformat,
            decoder=datetime.fromisoformat,
            mm_field=fields.DateTime(format='iso')
        )
    )
```

#### Extending

Similarly, you might want to extend `dataclasses_json` to encode `date` objects.

```python
from dataclasses import dataclass, field
from dataclasses_json import dataclass_json, config
from datetime import date
from marshmallow import fields

dataclasses_json.cfg.global_config.encoders[date] = date.isoformat
dataclasses_json.cfg.global_config.decoders[date] = date.fromisoformat

@dataclass_json
@dataclass
class DataClassWithIsoDatetime:
    created_at: date
    modified_at: date
    accessed_at: date
```

As you can see, you can **override** or **extend** the default codecs by providing a "hook" via a 
callable:
- `encoder`: a callable, which will be invoked to convert the field value when encoding to JSON
- `decoder`: a callable, which will be invoked to convert the JSON value when decoding from JSON
- `mm_field`: a marshmallow field, which will affect the behavior of any operations involving `.schema()`

Note that these hooks will be invoked regardless if you're using 
`.to_json`/`dump`/`dumps`
and `.from_json`/`load`/`loads`. So apply overrides / extensions judiciously, making sure to 
carefully consider whether the interaction of the encode/decode/mm_field is consistent with what you expect!


#### What if I have other dataclass field extensions that rely on `metadata`

All the `dataclasses_json.config` does is return a mapping, namespaced under the key `'dataclasses_json'`.

Say there's another module, `other_dataclass_package` that uses metadata. Here's how you solve your problem:

```python
metadata = {'other_dataclass_package': 'some metadata...'}  # pre-existing metadata for another dataclass package
dataclass_json_config = config(
            encoder=datetime.isoformat,
            decoder=datetime.fromisoformat,
            mm_field=fields.DateTime(format='iso')
        )
metadata.update(dataclass_json_config)

@dataclass_json
@dataclass
class DataClassWithIsoDatetime:
    created_at: datetime = field(metadata=metadata)
```

You can also manually specify the dataclass_json configuration mapping.

```python
@dataclass_json
@dataclass
class DataClassWithIsoDatetime:
    created_at: date = field(
        metadata={'dataclasses_json': {
            'encoder': date.isoformat,
            'decoder': date.fromisoformat,
            'mm_field': fields.DateTime(format='iso')
        }}
    )
```

## A larger example

```python
from dataclasses import dataclass
from dataclasses_json import dataclass_json

from typing import List

@dataclass_json
@dataclass(frozen=True)
class Minion:
    name: str


@dataclass_json
@dataclass(frozen=True)
class Boss:
    minions: List[Minion]

boss = Boss([Minion('evil minion'), Minion('very evil minion')])
boss_json = """
{
    "minions": [
        {
            "name": "evil minion"
        },
        {
            "name": "very evil minion"
        }
    ]
}
""".strip()

assert boss.to_json(indent=4) == boss_json
assert Boss.from_json(boss_json) == boss
```

## Performance

Take a look at [this issue](https://github.com/lidatong/dataclasses-json/issues/228)

## Versioning

Note this library is still pre-1.0.0 (SEMVER).

The current convention is:
- **PATCH** version upgrades for bug fixes and minor feature additions.
- **MINOR** version upgrades for big API features and breaking changes.

Once this library is 1.0.0, it will follow standard SEMVER conventions.


## Roadmap

Currently the focus is on investigating and fixing bugs in this library, working
on performance, and finishing [this issue](https://github.com/lidatong/dataclasses-json/issues/31).

That said, if you think there's a feature missing / something new needed in the
library, please see the contributing section below.


## Contributing

First of all, thank you for being interested in contributing to this library.
I really appreciate you taking the time to work on this project.

- If you're just interested in getting into the code, a good place to start are 
issues tagged as bugs.
- If introducing a new feature, especially one that modifies the public API, 
consider submitting an issue for discussion before a PR. Please also take a look 
at existing issues / PRs to see what you're proposing has  already been covered 
before / exists.
- I like to follow the commit conventions documented [here](https://www.conventionalcommits.org/en/v1.0.0/#summary)