Spaces:
Runtime error
Runtime error
File size: 22,785 Bytes
35b22df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
Metadata-Version: 2.1
Name: dataclasses-json
Version: 0.5.9
Summary: Easily serialize dataclasses to and from JSON
Home-page: https://github.com/lidatong/dataclasses-json
Author: lidatong
Author-email: [email protected]
License: MIT
Keywords: dataclasses json
Requires-Python: >=3.6
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: marshmallow (<4.0.0,>=3.3.0)
Requires-Dist: marshmallow-enum (<2.0.0,>=1.5.1)
Requires-Dist: typing-inspect (>=0.4.0)
Requires-Dist: dataclasses ; python_version == "3.6"
Provides-Extra: dev
Requires-Dist: pytest (>=7.2.0) ; extra == 'dev'
Requires-Dist: ipython ; extra == 'dev'
Requires-Dist: mypy (>=0.710) ; extra == 'dev'
Requires-Dist: hypothesis ; extra == 'dev'
Requires-Dist: portray ; extra == 'dev'
Requires-Dist: flake8 ; extra == 'dev'
Requires-Dist: simplejson ; extra == 'dev'
Requires-Dist: setuptools ; extra == 'dev'
Requires-Dist: wheel ; extra == 'dev'
Requires-Dist: twine ; extra == 'dev'
Requires-Dist: types-dataclasses ; (python_version == "3.6") and extra == 'dev'
# Dataclasses JSON
![](https://github.com/lidatong/dataclasses-json/workflows/dataclasses-json/badge.svg)
This library provides a simple API for encoding and decoding [dataclasses](https://docs.python.org/3/library/dataclasses.html) to and from JSON.
It's very easy to get started.
[README / Documentation website](https://lidatong.github.io/dataclasses-json). Features a navigation bar and search functionality, and should mirror this README exactly -- take a look!
## Quickstart
`pip install dataclasses-json`
```python
from dataclasses import dataclass
from dataclasses_json import dataclass_json
@dataclass_json
@dataclass
class Person:
name: str
person = Person(name='lidatong')
person.to_json() # '{"name": "lidatong"}' <- this is a string
person.to_dict() # {'name': 'lidatong'} <- this is a dict
Person.from_json('{"name": "lidatong"}') # Person(1)
Person.from_dict({'name': 'lidatong'}) # Person(1)
# You can also apply _schema validation_ using an alternative API
# This can be useful for "typed" Python code
Person.from_json('{"name": 42}') # This is ok. 42 is not a `str`, but
# dataclass creation does not validate types
Person.schema().loads('{"name": 42}') # Error! Raises `ValidationError`
```
**What if you want to work with camelCase JSON?**
```python
# same imports as above, with the additional `LetterCase` import
from dataclasses import dataclass
from dataclasses_json import dataclass_json, LetterCase
@dataclass_json(letter_case=LetterCase.CAMEL) # now all fields are encoded/decoded from camelCase
@dataclass
class ConfiguredSimpleExample:
int_field: int
ConfiguredSimpleExample(1).to_json() # {"intField": 1}
ConfiguredSimpleExample.from_json('{"intField": 1}') # ConfiguredSimpleExample(1)
```
## Supported types
It's recursive (see caveats below), so you can easily work with nested dataclasses.
In addition to the supported types in the
[py to JSON table](https://docs.python.org/3/library/json.html#py-to-json-table), this library supports the following:
- any arbitrary [Collection](https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection) type is supported.
[Mapping](https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping) types are encoded as JSON objects and `str` types as JSON strings.
Any other Collection types are encoded into JSON arrays, but decoded into the original collection types.
- [datetime](https://docs.python.org/3/library/datetime.html#available-types)
objects. `datetime` objects are encoded to `float` (JSON number) using
[timestamp](https://docs.python.org/3/library/datetime.html#datetime.datetime.timestamp).
As specified in the `datetime` docs, if your `datetime` object is naive, it will
assume your system local timezone when calling `.timestamp()`. JSON numbers
corresponding to a `datetime` field in your dataclass are decoded
into a datetime-aware object, with `tzinfo` set to your system local timezone.
Thus, if you encode a datetime-naive object, you will decode into a
datetime-aware object. This is important, because encoding and decoding won't
strictly be inverses. See [this section](#Overriding) if you want to override this default
behavior (for example, if you want to use ISO).
- [UUID](https://docs.python.org/3/library/uuid.html#uuid.UUID) objects. They
are encoded as `str` (JSON string).
- [Decimal](https://docs.python.org/3/library/decimal.html) objects. They are
also encoded as `str`.
**The [latest release](https://github.com/lidatong/dataclasses-json/releases/latest) is compatible with both Python 3.7 and Python 3.6 (with the dataclasses backport).**
## Usage
#### Approach 1: Class decorator
```python
from dataclasses import dataclass
from dataclasses_json import dataclass_json
@dataclass_json
@dataclass
class Person:
name: str
lidatong = Person('lidatong')
# Encoding to JSON
lidatong.to_json() # '{"name": "lidatong"}'
# Decoding from JSON
Person.from_json('{"name": "lidatong"}') # Person(name='lidatong')
```
Note that the `@dataclass_json` decorator must be stacked above the `@dataclass`
decorator (order matters!)
#### Approach 2: Inherit from a mixin
```python
from dataclasses import dataclass
from dataclasses_json import DataClassJsonMixin
@dataclass
class Person(DataClassJsonMixin):
name: str
lidatong = Person('lidatong')
# A different example from Approach 1 above, but usage is the exact same
assert Person.from_json(lidatong.to_json()) == lidatong
```
Pick whichever approach suits your taste. Note that there is better support for
the mixin approach when using _static analysis_ tools (e.g. linting, typing),
but the differences in implementation will be invisible in _runtime_ usage.
## How do I...
### Use my dataclass with JSON arrays or objects?
```python
from dataclasses import dataclass
from dataclasses_json import dataclass_json
@dataclass_json
@dataclass
class Person:
name: str
```
**Encode into a JSON array containing instances of my Data Class**
```python
people_json = [Person('lidatong')]
Person.schema().dumps(people_json, many=True) # '[{"name": "lidatong"}]'
```
**Decode a JSON array containing instances of my Data Class**
```python
people_json = '[{"name": "lidatong"}]'
Person.schema().loads(people_json, many=True) # [Person(name='lidatong')]
```
**Encode as part of a larger JSON object containing my Data Class (e.g. an HTTP
request/response)**
```python
import json
response_dict = {
'response': {
'person': Person('lidatong').to_dict()
}
}
response_json = json.dumps(response_dict)
```
In this case, we do two steps. First, we encode the dataclass into a
**python dictionary** rather than a JSON string, using `.to_dict`.
Second, we leverage the built-in `json.dumps` to serialize our `dataclass` into
a JSON string.
**Decode as part of a larger JSON object containing my Data Class (e.g. an HTTP
response)**
```python
import json
response_dict = json.loads('{"response": {"person": {"name": "lidatong"}}}')
person_dict = response_dict['response']
person = Person.from_dict(person_dict)
```
In a similar vein to encoding above, we leverage the built-in `json` module.
First, call `json.loads` to read the entire JSON object into a
dictionary. We then access the key of the value containing the encoded dict of
our `Person` that we want to decode (`response_dict['response']`).
Second, we load in the dictionary using `Person.from_dict`.
### Encode or decode into Python lists/dictionaries rather than JSON?
This can be by calling `.schema()` and then using the corresponding
encoder/decoder methods, ie. `.load(...)`/`.dump(...)`.
**Encode into a single Python dictionary**
```python
person = Person('lidatong')
person.to_dict() # {'name': 'lidatong'}
```
**Encode into a list of Python dictionaries**
```python
people = [Person('lidatong')]
Person.schema().dump(people, many=True) # [{'name': 'lidatong'}]
```
**Decode a dictionary into a single dataclass instance**
```python
person_dict = {'name': 'lidatong'}
Person.from_dict(person_dict) # Person(name='lidatong')
```
**Decode a list of dictionaries into a list of dataclass instances**
```python
people_dicts = [{"name": "lidatong"}]
Person.schema().load(people_dicts, many=True) # [Person(name='lidatong')]
```
### Encode or decode from camelCase (or kebab-case)?
JSON letter case by convention is camelCase, in Python members are by convention snake_case.
You can configure it to encode/decode from other casing schemes at both the class level and the field level.
```python
from dataclasses import dataclass, field
from dataclasses_json import LetterCase, config, dataclass_json
# changing casing at the class level
@dataclass_json(letter_case=LetterCase.CAMEL)
@dataclass
class Person:
given_name: str
family_name: str
Person('Alice', 'Liddell').to_json() # '{"givenName": "Alice"}'
Person.from_json('{"givenName": "Alice", "familyName": "Liddell"}') # Person('Alice', 'Liddell')
# at the field level
@dataclass_json
@dataclass
class Person:
given_name: str = field(metadata=config(letter_case=LetterCase.CAMEL))
family_name: str
Person('Alice', 'Liddell').to_json() # '{"givenName": "Alice"}'
# notice how the `family_name` field is still snake_case, because it wasn't configured above
Person.from_json('{"givenName": "Alice", "family_name": "Liddell"}') # Person('Alice', 'Liddell')
```
**This library assumes your field follows the Python convention of snake_case naming.**
If your field is not `snake_case` to begin with and you attempt to parameterize `LetterCase`,
the behavior of encoding/decoding is undefined (most likely it will result in subtle bugs).
### Encode or decode using a different name
```python
from dataclasses import dataclass, field
from dataclasses_json import config, dataclass_json
@dataclass_json
@dataclass
class Person:
given_name: str = field(metadata=config(field_name="overriddenGivenName"))
Person(given_name="Alice") # Person('Alice')
Person.from_json('{"overriddenGivenName": "Alice"}') # Person('Alice')
Person('Alice').to_json() # {"overriddenGivenName": "Alice"}
```
### Handle missing or optional field values when decoding?
By default, any fields in your dataclass that use `default` or
`default_factory` will have the values filled with the provided default, if the
corresponding field is missing from the JSON you're decoding.
**Decode JSON with missing field**
```python
@dataclass_json
@dataclass
class Student:
id: int
name: str = 'student'
Student.from_json('{"id": 1}') # Student(id=1, name='student')
```
Notice `from_json` filled the field `name` with the specified default 'student'
when it was missing from the JSON.
Sometimes you have fields that are typed as `Optional`, but you don't
necessarily want to assign a default. In that case, you can use the
`infer_missing` kwarg to make `from_json` infer the missing field value as `None`.
**Decode optional field without default**
```python
@dataclass_json
@dataclass
class Tutor:
id: int
student: Optional[Student] = None
Tutor.from_json('{"id": 1}') # Tutor(id=1, student=None)
```
Personally I recommend you leverage dataclass defaults rather than using
`infer_missing`, but if for some reason you need to decouple the behavior of
JSON decoding from the field's default value, this will allow you to do so.
### Handle unknown / extraneous fields in JSON?
By default, it is up to the implementation what happens when a `json_dataclass` receives input parameters that are not defined.
(the `from_dict` method ignores them, when loading using `schema()` a ValidationError is raised.)
There are three ways to customize this behavior.
Assume you want to instantiate a dataclass with the following dictionary:
```python
dump_dict = {"endpoint": "some_api_endpoint", "data": {"foo": 1, "bar": "2"}, "undefined_field_name": [1, 2, 3]}
```
1. You can enforce to always raise an error by setting the `undefined` keyword to `Undefined.RAISE`
(`'RAISE'` as a case-insensitive string works as well). Of course it works normally if you don't pass any undefined parameters.
```python
from dataclasses_json import Undefined
@dataclass_json(undefined=Undefined.RAISE)
@dataclass()
class ExactAPIDump:
endpoint: str
data: Dict[str, Any]
dump = ExactAPIDump.from_dict(dump_dict) # raises UndefinedParameterError
```
2. You can simply ignore any undefined parameters by setting the `undefined` keyword to `Undefined.EXCLUDE`
(`'EXCLUDE'` as a case-insensitive string works as well). Note that you will not be able to retrieve them using `to_dict`:
```python
from dataclasses_json import Undefined
@dataclass_json(undefined=Undefined.EXCLUDE)
@dataclass()
class DontCareAPIDump:
endpoint: str
data: Dict[str, Any]
dump = DontCareAPIDump.from_dict(dump_dict) # DontCareAPIDump(endpoint='some_api_endpoint', data={'foo': 1, 'bar': '2'})
dump.to_dict() # {"endpoint": "some_api_endpoint", "data": {"foo": 1, "bar": "2"}}
```
3. You can save them in a catch-all field and do whatever needs to be done later. Simply set the `undefined`
keyword to `Undefined.INCLUDE` (`'INCLUDE'` as a case-insensitive string works as well) and define a field
of type `CatchAll` where all unknown values will end up.
This simply represents a dictionary that can hold anything.
If there are no undefined parameters, this will be an empty dictionary.
```python
from dataclasses_json import Undefined, CatchAll
@dataclass_json(undefined=Undefined.INCLUDE)
@dataclass()
class UnknownAPIDump:
endpoint: str
data: Dict[str, Any]
unknown_things: CatchAll
dump = UnknownAPIDump.from_dict(dump_dict) # UnknownAPIDump(endpoint='some_api_endpoint', data={'foo': 1, 'bar': '2'}, unknown_things={'undefined_field_name': [1, 2, 3]})
dump.to_dict() # {'endpoint': 'some_api_endpoint', 'data': {'foo': 1, 'bar': '2'}, 'undefined_field_name': [1, 2, 3]}
```
Notes:
- When using `Undefined.INCLUDE`, an `UndefinedParameterError` will be raised if you don't specify
exactly one field of type `CatchAll`.
- Note that `LetterCase` does not affect values written into the `CatchAll` field, they will be as they are given.
- When specifying a default (or a default factory) for the the `CatchAll`-field, e.g. `unknown_things: CatchAll = None`, the default value will be used instead of an empty dict if there are no undefined parameters.
- Calling __init__ with non-keyword arguments resolves the arguments to the defined fields and writes everything else into the catch-all field.
4. All 3 options work as well using `schema().loads` and `schema().dumps`, as long as you don't overwrite it by specifying `schema(unknown=<a marshmallow value>)`.
marshmallow uses the same 3 keywords ['include', 'exclude', 'raise'](https://marshmallow.readthedocs.io/en/stable/quickstart.html#handling-unknown-fields).
5. All 3 operations work as well using `__init__`, e.g. `UnknownAPIDump(**dump_dict)` will **not** raise a `TypeError`, but write all unknown values to the field tagged as `CatchAll`.
Classes tagged with `EXCLUDE` will also simply ignore unknown parameters. Note that classes tagged as `RAISE` still raise a `TypeError`, and **not** a `UndefinedParameterError` if supplied with unknown keywords.
### Override the default encode / decode / marshmallow field of a specific field?
See [Overriding](#Overriding)
### Handle recursive dataclasses?
Object hierarchies where fields are of the type that they are declared within require a small
type hinting trick to declare the forward reference.
```python
from typing import Optional
from dataclasses import dataclass
from dataclasses_json import dataclass_json
@dataclass_json
@dataclass
class Tree():
value: str
left: Optional['Tree']
right: Optional['Tree']
```
Avoid using
```python
from __future__ import annotations
```
as it will cause problems with the way dataclasses_json accesses the type annotations.
## Marshmallow interop
Using the `dataclass_json` decorator or mixing in `DataClassJsonMixin` will
provide you with an additional method `.schema()`.
`.schema()` generates a schema exactly equivalent to manually creating a
marshmallow schema for your dataclass. You can reference the [marshmallow API docs](https://marshmallow.readthedocs.io/en/3.0/api_reference.html#schema)
to learn other ways you can use the schema returned by `.schema()`.
You can pass in the exact same arguments to `.schema()` that you would when
constructing a `PersonSchema` instance, e.g. `.schema(many=True)`, and they will
get passed through to the marshmallow schema.
```python
from dataclasses import dataclass
from dataclasses_json import dataclass_json
@dataclass_json
@dataclass
class Person:
name: str
# You don't need to do this - it's generated for you by `.schema()`!
from marshmallow import Schema, fields
class PersonSchema(Schema):
name = fields.Str()
```
Briefly, on what's going on under the hood in the above examples: calling
`.schema()` will have this library generate a
[marshmallow schema]('https://marshmallow.readthedocs.io/en/3.0/api_reference.html#schema)
for you. It also fills in the corresponding object hook, so that marshmallow
will create an instance of your Data Class on `load` (e.g.
`Person.schema().load` returns a `Person`) rather than a `dict`, which it does
by default in marshmallow.
**Performance note**
`.schema()` is not cached (it generates the schema on every call), so if you
have a nested Data Class you may want to save the result to a variable to
avoid re-generation of the schema on every usage.
```python
person_schema = Person.schema()
person_schema.dump(people, many=True)
# later in the code...
person_schema.dump(person)
```
## Overriding / Extending
#### Overriding
For example, you might want to encode/decode `datetime` objects using ISO format
rather than the default `timestamp`.
```python
from dataclasses import dataclass, field
from dataclasses_json import dataclass_json, config
from datetime import datetime
from marshmallow import fields
@dataclass_json
@dataclass
class DataClassWithIsoDatetime:
created_at: datetime = field(
metadata=config(
encoder=datetime.isoformat,
decoder=datetime.fromisoformat,
mm_field=fields.DateTime(format='iso')
)
)
```
#### Extending
Similarly, you might want to extend `dataclasses_json` to encode `date` objects.
```python
from dataclasses import dataclass, field
from dataclasses_json import dataclass_json, config
from datetime import date
from marshmallow import fields
dataclasses_json.cfg.global_config.encoders[date] = date.isoformat
dataclasses_json.cfg.global_config.decoders[date] = date.fromisoformat
@dataclass_json
@dataclass
class DataClassWithIsoDatetime:
created_at: date
modified_at: date
accessed_at: date
```
As you can see, you can **override** or **extend** the default codecs by providing a "hook" via a
callable:
- `encoder`: a callable, which will be invoked to convert the field value when encoding to JSON
- `decoder`: a callable, which will be invoked to convert the JSON value when decoding from JSON
- `mm_field`: a marshmallow field, which will affect the behavior of any operations involving `.schema()`
Note that these hooks will be invoked regardless if you're using
`.to_json`/`dump`/`dumps`
and `.from_json`/`load`/`loads`. So apply overrides / extensions judiciously, making sure to
carefully consider whether the interaction of the encode/decode/mm_field is consistent with what you expect!
#### What if I have other dataclass field extensions that rely on `metadata`
All the `dataclasses_json.config` does is return a mapping, namespaced under the key `'dataclasses_json'`.
Say there's another module, `other_dataclass_package` that uses metadata. Here's how you solve your problem:
```python
metadata = {'other_dataclass_package': 'some metadata...'} # pre-existing metadata for another dataclass package
dataclass_json_config = config(
encoder=datetime.isoformat,
decoder=datetime.fromisoformat,
mm_field=fields.DateTime(format='iso')
)
metadata.update(dataclass_json_config)
@dataclass_json
@dataclass
class DataClassWithIsoDatetime:
created_at: datetime = field(metadata=metadata)
```
You can also manually specify the dataclass_json configuration mapping.
```python
@dataclass_json
@dataclass
class DataClassWithIsoDatetime:
created_at: date = field(
metadata={'dataclasses_json': {
'encoder': date.isoformat,
'decoder': date.fromisoformat,
'mm_field': fields.DateTime(format='iso')
}}
)
```
## A larger example
```python
from dataclasses import dataclass
from dataclasses_json import dataclass_json
from typing import List
@dataclass_json
@dataclass(frozen=True)
class Minion:
name: str
@dataclass_json
@dataclass(frozen=True)
class Boss:
minions: List[Minion]
boss = Boss([Minion('evil minion'), Minion('very evil minion')])
boss_json = """
{
"minions": [
{
"name": "evil minion"
},
{
"name": "very evil minion"
}
]
}
""".strip()
assert boss.to_json(indent=4) == boss_json
assert Boss.from_json(boss_json) == boss
```
## Performance
Take a look at [this issue](https://github.com/lidatong/dataclasses-json/issues/228)
## Versioning
Note this library is still pre-1.0.0 (SEMVER).
The current convention is:
- **PATCH** version upgrades for bug fixes and minor feature additions.
- **MINOR** version upgrades for big API features and breaking changes.
Once this library is 1.0.0, it will follow standard SEMVER conventions.
## Roadmap
Currently the focus is on investigating and fixing bugs in this library, working
on performance, and finishing [this issue](https://github.com/lidatong/dataclasses-json/issues/31).
That said, if you think there's a feature missing / something new needed in the
library, please see the contributing section below.
## Contributing
First of all, thank you for being interested in contributing to this library.
I really appreciate you taking the time to work on this project.
- If you're just interested in getting into the code, a good place to start are
issues tagged as bugs.
- If introducing a new feature, especially one that modifies the public API,
consider submitting an issue for discussion before a PR. Please also take a look
at existing issues / PRs to see what you're proposing has already been covered
before / exists.
- I like to follow the commit conventions documented [here](https://www.conventionalcommits.org/en/v1.0.0/#summary)
|