File size: 22,861 Bytes
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
"""
Utility routines
"""
from collections.abc import Mapping
from copy import deepcopy
import json
import itertools
import re
import sys
import traceback
import warnings
from typing import Callable, TypeVar, Any

import jsonschema
import pandas as pd
import numpy as np

from altair.utils.schemapi import SchemaBase

if sys.version_info >= (3, 10):
    from typing import ParamSpec
else:
    from typing_extensions import ParamSpec

try:
    from pandas.api.types import infer_dtype as _infer_dtype
except ImportError:
    # Import for pandas < 0.20.0
    from pandas.lib import infer_dtype as _infer_dtype  # type: ignore[no-redef]

_V = TypeVar("_V")
_P = ParamSpec("_P")


def infer_dtype(value):
    """Infer the dtype of the value.

    This is a compatibility function for pandas infer_dtype,
    with skipna=False regardless of the pandas version.
    """
    if not hasattr(infer_dtype, "_supports_skipna"):
        try:
            _infer_dtype([1], skipna=False)
        except TypeError:
            # pandas < 0.21.0 don't support skipna keyword
            infer_dtype._supports_skipna = False
        else:
            infer_dtype._supports_skipna = True
    if infer_dtype._supports_skipna:
        return _infer_dtype(value, skipna=False)
    else:
        return _infer_dtype(value)


TYPECODE_MAP = {
    "ordinal": "O",
    "nominal": "N",
    "quantitative": "Q",
    "temporal": "T",
    "geojson": "G",
}

INV_TYPECODE_MAP = {v: k for k, v in TYPECODE_MAP.items()}


# aggregates from vega-lite version 4.6.0
AGGREGATES = [
    "argmax",
    "argmin",
    "average",
    "count",
    "distinct",
    "max",
    "mean",
    "median",
    "min",
    "missing",
    "product",
    "q1",
    "q3",
    "ci0",
    "ci1",
    "stderr",
    "stdev",
    "stdevp",
    "sum",
    "valid",
    "values",
    "variance",
    "variancep",
]

# window aggregates from vega-lite version 4.6.0
WINDOW_AGGREGATES = [
    "row_number",
    "rank",
    "dense_rank",
    "percent_rank",
    "cume_dist",
    "ntile",
    "lag",
    "lead",
    "first_value",
    "last_value",
    "nth_value",
]

# timeUnits from vega-lite version 4.17.0
TIMEUNITS = [
    "year",
    "quarter",
    "month",
    "week",
    "day",
    "dayofyear",
    "date",
    "hours",
    "minutes",
    "seconds",
    "milliseconds",
    "yearquarter",
    "yearquartermonth",
    "yearmonth",
    "yearmonthdate",
    "yearmonthdatehours",
    "yearmonthdatehoursminutes",
    "yearmonthdatehoursminutesseconds",
    "yearweek",
    "yearweekday",
    "yearweekdayhours",
    "yearweekdayhoursminutes",
    "yearweekdayhoursminutesseconds",
    "yeardayofyear",
    "quartermonth",
    "monthdate",
    "monthdatehours",
    "monthdatehoursminutes",
    "monthdatehoursminutesseconds",
    "weekday",
    "weeksdayhours",
    "weekdayhoursminutes",
    "weekdayhoursminutesseconds",
    "dayhours",
    "dayhoursminutes",
    "dayhoursminutesseconds",
    "hoursminutes",
    "hoursminutesseconds",
    "minutesseconds",
    "secondsmilliseconds",
    "utcyear",
    "utcquarter",
    "utcmonth",
    "utcweek",
    "utcday",
    "utcdayofyear",
    "utcdate",
    "utchours",
    "utcminutes",
    "utcseconds",
    "utcmilliseconds",
    "utcyearquarter",
    "utcyearquartermonth",
    "utcyearmonth",
    "utcyearmonthdate",
    "utcyearmonthdatehours",
    "utcyearmonthdatehoursminutes",
    "utcyearmonthdatehoursminutesseconds",
    "utcyearweek",
    "utcyearweekday",
    "utcyearweekdayhours",
    "utcyearweekdayhoursminutes",
    "utcyearweekdayhoursminutesseconds",
    "utcyeardayofyear",
    "utcquartermonth",
    "utcmonthdate",
    "utcmonthdatehours",
    "utcmonthdatehoursminutes",
    "utcmonthdatehoursminutesseconds",
    "utcweekday",
    "utcweeksdayhours",
    "utcweekdayhoursminutes",
    "utcweekdayhoursminutesseconds",
    "utcdayhours",
    "utcdayhoursminutes",
    "utcdayhoursminutesseconds",
    "utchoursminutes",
    "utchoursminutesseconds",
    "utcminutesseconds",
    "utcsecondsmilliseconds",
]


def infer_vegalite_type(data):
    """
    From an array-like input, infer the correct vega typecode
    ('ordinal', 'nominal', 'quantitative', or 'temporal')

    Parameters
    ----------
    data: Numpy array or Pandas Series
    """
    # Otherwise, infer based on the dtype of the input
    typ = infer_dtype(data)

    if typ in [
        "floating",
        "mixed-integer-float",
        "integer",
        "mixed-integer",
        "complex",
    ]:
        return "quantitative"
    elif typ == "categorical" and data.cat.ordered:
        return ("ordinal", data.cat.categories.tolist())
    elif typ in ["string", "bytes", "categorical", "boolean", "mixed", "unicode"]:
        return "nominal"
    elif typ in [
        "datetime",
        "datetime64",
        "timedelta",
        "timedelta64",
        "date",
        "time",
        "period",
    ]:
        return "temporal"
    else:
        warnings.warn(
            "I don't know how to infer vegalite type from '{}'.  "
            "Defaulting to nominal.".format(typ),
            stacklevel=1,
        )
        return "nominal"


def merge_props_geom(feat):
    """
    Merge properties with geometry
    * Overwrites 'type' and 'geometry' entries if existing
    """

    geom = {k: feat[k] for k in ("type", "geometry")}
    try:
        feat["properties"].update(geom)
        props_geom = feat["properties"]
    except (AttributeError, KeyError):
        # AttributeError when 'properties' equals None
        # KeyError when 'properties' is non-existing
        props_geom = geom

    return props_geom


def sanitize_geo_interface(geo):
    """Santize a geo_interface to prepare it for serialization.

    * Make a copy
    * Convert type array or _Array to list
    * Convert tuples to lists (using json.loads/dumps)
    * Merge properties with geometry
    """

    geo = deepcopy(geo)

    # convert type _Array or array to list
    for key in geo.keys():
        if str(type(geo[key]).__name__).startswith(("_Array", "array")):
            geo[key] = geo[key].tolist()

    # convert (nested) tuples to lists
    geo = json.loads(json.dumps(geo))

    # sanitize features
    if geo["type"] == "FeatureCollection":
        geo = geo["features"]
        if len(geo) > 0:
            for idx, feat in enumerate(geo):
                geo[idx] = merge_props_geom(feat)
    elif geo["type"] == "Feature":
        geo = merge_props_geom(geo)
    else:
        geo = {"type": "Feature", "geometry": geo}

    return geo


def sanitize_dataframe(df):  # noqa: C901
    """Sanitize a DataFrame to prepare it for serialization.

    * Make a copy
    * Convert RangeIndex columns to strings
    * Raise ValueError if column names are not strings
    * Raise ValueError if it has a hierarchical index.
    * Convert categoricals to strings.
    * Convert np.bool_ dtypes to Python bool objects
    * Convert np.int dtypes to Python int objects
    * Convert floats to objects and replace NaNs/infs with None.
    * Convert DateTime dtypes into appropriate string representations
    * Convert Nullable integers to objects and replace NaN with None
    * Convert Nullable boolean to objects and replace NaN with None
    * convert dedicated string column to objects and replace NaN with None
    * Raise a ValueError for TimeDelta dtypes
    """
    df = df.copy()

    if isinstance(df.columns, pd.RangeIndex):
        df.columns = df.columns.astype(str)

    for col in df.columns:
        if not isinstance(col, str):
            raise ValueError(
                "Dataframe contains invalid column name: {0!r}. "
                "Column names must be strings".format(col)
            )

    if isinstance(df.index, pd.MultiIndex):
        raise ValueError("Hierarchical indices not supported")
    if isinstance(df.columns, pd.MultiIndex):
        raise ValueError("Hierarchical indices not supported")

    def to_list_if_array(val):
        if isinstance(val, np.ndarray):
            return val.tolist()
        else:
            return val

    for col_name, dtype in df.dtypes.items():
        if str(dtype) == "category":
            # Work around bug in to_json for categorical types in older versions of pandas
            # https://github.com/pydata/pandas/issues/10778
            # https://github.com/altair-viz/altair/pull/2170
            col = df[col_name].astype(object)
            df[col_name] = col.where(col.notnull(), None)
        elif str(dtype) == "string":
            # dedicated string datatype (since 1.0)
            # https://pandas.pydata.org/pandas-docs/version/1.0.0/whatsnew/v1.0.0.html#dedicated-string-data-type
            col = df[col_name].astype(object)
            df[col_name] = col.where(col.notnull(), None)
        elif str(dtype) == "bool":
            # convert numpy bools to objects; np.bool is not JSON serializable
            df[col_name] = df[col_name].astype(object)
        elif str(dtype) == "boolean":
            # dedicated boolean datatype (since 1.0)
            # https://pandas.io/docs/user_guide/boolean.html
            col = df[col_name].astype(object)
            df[col_name] = col.where(col.notnull(), None)
        elif str(dtype).startswith("datetime"):
            # Convert datetimes to strings. This needs to be a full ISO string
            # with time, which is why we cannot use ``col.astype(str)``.
            # This is because Javascript parses date-only times in UTC, but
            # parses full ISO-8601 dates as local time, and dates in Vega and
            # Vega-Lite are displayed in local time by default.
            # (see https://github.com/altair-viz/altair/issues/1027)
            df[col_name] = (
                df[col_name].apply(lambda x: x.isoformat()).replace("NaT", "")
            )
        elif str(dtype).startswith("timedelta"):
            raise ValueError(
                'Field "{col_name}" has type "{dtype}" which is '
                "not supported by Altair. Please convert to "
                "either a timestamp or a numerical value."
                "".format(col_name=col_name, dtype=dtype)
            )
        elif str(dtype).startswith("geometry"):
            # geopandas >=0.6.1 uses the dtype geometry. Continue here
            # otherwise it will give an error on np.issubdtype(dtype, np.integer)
            continue
        elif str(dtype) in {
            "Int8",
            "Int16",
            "Int32",
            "Int64",
            "UInt8",
            "UInt16",
            "UInt32",
            "UInt64",
            "Float32",
            "Float64",
        }:  # nullable integer datatypes (since 24.0) and nullable float datatypes (since 1.2.0)
            # https://pandas.pydata.org/pandas-docs/version/0.25/whatsnew/v0.24.0.html#optional-integer-na-support
            col = df[col_name].astype(object)
            df[col_name] = col.where(col.notnull(), None)
        elif np.issubdtype(dtype, np.integer):
            # convert integers to objects; np.int is not JSON serializable
            df[col_name] = df[col_name].astype(object)
        elif np.issubdtype(dtype, np.floating):
            # For floats, convert to Python float: np.float is not JSON serializable
            # Also convert NaN/inf values to null, as they are not JSON serializable
            col = df[col_name]
            bad_values = col.isnull() | np.isinf(col)
            df[col_name] = col.astype(object).where(~bad_values, None)
        elif dtype == object:
            # Convert numpy arrays saved as objects to lists
            # Arrays are not JSON serializable
            col = df[col_name].apply(to_list_if_array, convert_dtype=False)
            df[col_name] = col.where(col.notnull(), None)
    return df


def parse_shorthand(
    shorthand,
    data=None,
    parse_aggregates=True,
    parse_window_ops=False,
    parse_timeunits=True,
    parse_types=True,
):
    """General tool to parse shorthand values

    These are of the form:

    - "col_name"
    - "col_name:O"
    - "average(col_name)"
    - "average(col_name):O"

    Optionally, a dataframe may be supplied, from which the type
    will be inferred if not specified in the shorthand.

    Parameters
    ----------
    shorthand : dict or string
        The shorthand representation to be parsed
    data : DataFrame, optional
        If specified and of type DataFrame, then use these values to infer the
        column type if not provided by the shorthand.
    parse_aggregates : boolean
        If True (default), then parse aggregate functions within the shorthand.
    parse_window_ops : boolean
        If True then parse window operations within the shorthand (default:False)
    parse_timeunits : boolean
        If True (default), then parse timeUnits from within the shorthand
    parse_types : boolean
        If True (default), then parse typecodes within the shorthand

    Returns
    -------
    attrs : dict
        a dictionary of attributes extracted from the shorthand

    Examples
    --------
    >>> data = pd.DataFrame({'foo': ['A', 'B', 'A', 'B'],
    ...                      'bar': [1, 2, 3, 4]})

    >>> parse_shorthand('name') == {'field': 'name'}
    True

    >>> parse_shorthand('name:Q') == {'field': 'name', 'type': 'quantitative'}
    True

    >>> parse_shorthand('average(col)') == {'aggregate': 'average', 'field': 'col'}
    True

    >>> parse_shorthand('foo:O') == {'field': 'foo', 'type': 'ordinal'}
    True

    >>> parse_shorthand('min(foo):Q') == {'aggregate': 'min', 'field': 'foo', 'type': 'quantitative'}
    True

    >>> parse_shorthand('month(col)') == {'field': 'col', 'timeUnit': 'month', 'type': 'temporal'}
    True

    >>> parse_shorthand('year(col):O') == {'field': 'col', 'timeUnit': 'year', 'type': 'ordinal'}
    True

    >>> parse_shorthand('foo', data) == {'field': 'foo', 'type': 'nominal'}
    True

    >>> parse_shorthand('bar', data) == {'field': 'bar', 'type': 'quantitative'}
    True

    >>> parse_shorthand('bar:O', data) == {'field': 'bar', 'type': 'ordinal'}
    True

    >>> parse_shorthand('sum(bar)', data) == {'aggregate': 'sum', 'field': 'bar', 'type': 'quantitative'}
    True

    >>> parse_shorthand('count()', data) == {'aggregate': 'count', 'type': 'quantitative'}
    True
    """
    if not shorthand:
        return {}

    valid_typecodes = list(TYPECODE_MAP) + list(INV_TYPECODE_MAP)

    units = {
        "field": "(?P<field>.*)",
        "type": "(?P<type>{})".format("|".join(valid_typecodes)),
        "agg_count": "(?P<aggregate>count)",
        "op_count": "(?P<op>count)",
        "aggregate": "(?P<aggregate>{})".format("|".join(AGGREGATES)),
        "window_op": "(?P<op>{})".format("|".join(AGGREGATES + WINDOW_AGGREGATES)),
        "timeUnit": "(?P<timeUnit>{})".format("|".join(TIMEUNITS)),
    }

    patterns = []

    if parse_aggregates:
        patterns.extend([r"{agg_count}\(\)"])
        patterns.extend([r"{aggregate}\({field}\)"])
    if parse_window_ops:
        patterns.extend([r"{op_count}\(\)"])
        patterns.extend([r"{window_op}\({field}\)"])
    if parse_timeunits:
        patterns.extend([r"{timeUnit}\({field}\)"])

    patterns.extend([r"{field}"])

    if parse_types:
        patterns = list(itertools.chain(*((p + ":{type}", p) for p in patterns)))

    regexps = (
        re.compile(r"\A" + p.format(**units) + r"\Z", re.DOTALL) for p in patterns
    )

    # find matches depending on valid fields passed
    if isinstance(shorthand, dict):
        attrs = shorthand
    else:
        attrs = next(
            exp.match(shorthand).groupdict() for exp in regexps if exp.match(shorthand)
        )

    # Handle short form of the type expression
    if "type" in attrs:
        attrs["type"] = INV_TYPECODE_MAP.get(attrs["type"], attrs["type"])

    # counts are quantitative by default
    if attrs == {"aggregate": "count"}:
        attrs["type"] = "quantitative"

    # times are temporal by default
    if "timeUnit" in attrs and "type" not in attrs:
        attrs["type"] = "temporal"

    # if data is specified and type is not, infer type from data
    if isinstance(data, pd.DataFrame) and "type" not in attrs:
        # Remove escape sequences so that types can be inferred for columns with special characters
        if "field" in attrs and attrs["field"].replace("\\", "") in data.columns:
            attrs["type"] = infer_vegalite_type(data[attrs["field"].replace("\\", "")])
            # ordered categorical dataframe columns return the type and sort order as a tuple
            if isinstance(attrs["type"], tuple):
                attrs["sort"] = attrs["type"][1]
                attrs["type"] = attrs["type"][0]

    # If an unescaped colon is still present, it's often due to an incorrect data type specification
    # but could also be due to using a column name with ":" in it.
    if (
        "field" in attrs
        and ":" in attrs["field"]
        and attrs["field"][attrs["field"].rfind(":") - 1] != "\\"
    ):
        raise ValueError(
            '"{}" '.format(attrs["field"].split(":")[-1])
            + "is not one of the valid encoding data types: {}.".format(
                ", ".join(TYPECODE_MAP.values())
            )
            + "\nFor more details, see https://altair-viz.github.io/user_guide/encodings/index.html#encoding-data-types. "
            + "If you are trying to use a column name that contains a colon, "
            + 'prefix it with a backslash; for example "column\\:name" instead of "column:name".'
        )
    return attrs


def use_signature(Obj: Callable[_P, Any]):
    """Apply call signature and documentation of Obj to the decorated method"""

    def decorate(f: Callable[..., _V]) -> Callable[_P, _V]:
        # call-signature of f is exposed via __wrapped__.
        # we want it to mimic Obj.__init__
        f.__wrapped__ = Obj.__init__  # type: ignore
        f._uses_signature = Obj  # type: ignore

        # Supplement the docstring of f with information from Obj
        if Obj.__doc__:
            # Patch in a reference to the class this docstring is copied from,
            # to generate a hyperlink.
            doclines = Obj.__doc__.splitlines()
            doclines[0] = f"Refer to :class:`{Obj.__name__}`"

            if f.__doc__:
                doc = f.__doc__ + "\n".join(doclines[1:])
            else:
                doc = "\n".join(doclines)
            try:
                f.__doc__ = doc
            except AttributeError:
                # __doc__ is not modifiable for classes in Python < 3.3
                pass

        return f

    return decorate


def update_nested(original, update, copy=False):
    """Update nested dictionaries

    Parameters
    ----------
    original : dict
        the original (nested) dictionary, which will be updated in-place
    update : dict
        the nested dictionary of updates
    copy : bool, default False
        if True, then copy the original dictionary rather than modifying it

    Returns
    -------
    original : dict
        a reference to the (modified) original dict

    Examples
    --------
    >>> original = {'x': {'b': 2, 'c': 4}}
    >>> update = {'x': {'b': 5, 'd': 6}, 'y': 40}
    >>> update_nested(original, update)  # doctest: +SKIP
    {'x': {'b': 5, 'c': 4, 'd': 6}, 'y': 40}
    >>> original  # doctest: +SKIP
    {'x': {'b': 5, 'c': 4, 'd': 6}, 'y': 40}
    """
    if copy:
        original = deepcopy(original)
    for key, val in update.items():
        if isinstance(val, Mapping):
            orig_val = original.get(key, {})
            if isinstance(orig_val, Mapping):
                original[key] = update_nested(orig_val, val)
            else:
                original[key] = val
        else:
            original[key] = val
    return original


def display_traceback(in_ipython=True):
    exc_info = sys.exc_info()

    if in_ipython:
        from IPython.core.getipython import get_ipython

        ip = get_ipython()
    else:
        ip = None

    if ip is not None:
        ip.showtraceback(exc_info)
    else:
        traceback.print_exception(*exc_info)


def infer_encoding_types(args, kwargs, channels):
    """Infer typed keyword arguments for args and kwargs

    Parameters
    ----------
    args : tuple
        List of function args
    kwargs : dict
        Dict of function kwargs
    channels : module
        The module containing all altair encoding channel classes.

    Returns
    -------
    kwargs : dict
        All args and kwargs in a single dict, with keys and types
        based on the channels mapping.
    """
    # Construct a dictionary of channel type to encoding name
    # TODO: cache this somehow?
    channel_objs = (getattr(channels, name) for name in dir(channels))
    channel_objs = (
        c for c in channel_objs if isinstance(c, type) and issubclass(c, SchemaBase)
    )
    channel_to_name = {c: c._encoding_name for c in channel_objs}
    name_to_channel = {}
    for chan, name in channel_to_name.items():
        chans = name_to_channel.setdefault(name, {})
        if chan.__name__.endswith("Datum"):
            key = "datum"
        elif chan.__name__.endswith("Value"):
            key = "value"
        else:
            key = "field"
        chans[key] = chan

    # First use the mapping to convert args to kwargs based on their types.
    for arg in args:
        if isinstance(arg, (list, tuple)) and len(arg) > 0:
            type_ = type(arg[0])
        else:
            type_ = type(arg)

        encoding = channel_to_name.get(type_, None)
        if encoding is None:
            raise NotImplementedError("positional of type {}" "".format(type_))
        if encoding in kwargs:
            raise ValueError("encoding {} specified twice.".format(encoding))
        kwargs[encoding] = arg

    def _wrap_in_channel_class(obj, encoding):
        if isinstance(obj, SchemaBase):
            return obj

        if isinstance(obj, str):
            obj = {"shorthand": obj}

        if isinstance(obj, (list, tuple)):
            return [_wrap_in_channel_class(subobj, encoding) for subobj in obj]

        if encoding not in name_to_channel:
            warnings.warn(
                "Unrecognized encoding channel '{}'".format(encoding), stacklevel=1
            )
            return obj

        classes = name_to_channel[encoding]
        cls = classes["value"] if "value" in obj else classes["field"]

        try:
            # Don't force validation here; some objects won't be valid until
            # they're created in the context of a chart.
            return cls.from_dict(obj, validate=False)
        except jsonschema.ValidationError:
            # our attempts at finding the correct class have failed
            return obj

    return {
        encoding: _wrap_in_channel_class(obj, encoding)
        for encoding, obj in kwargs.items()
    }