File size: 7,800 Bytes
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""Keyword-table based index.

Similar to a "hash table" in concept. LlamaIndex first tries
to extract keywords from the source text, and stores the
keywords as keys per item. It similarly extracts keywords
from the query text. Then, it tries to match those keywords to
existing keywords in the table.

"""

from abc import abstractmethod
from typing import Any, Dict, Optional, Sequence, Set, Type

from gpt_index.async_utils import run_async_tasks
from gpt_index.data_structs.data_structs import KeywordTable
from gpt_index.indices.base import DOCUMENTS_INPUT, BaseGPTIndex
from gpt_index.indices.keyword_table.utils import extract_keywords_given_response
from gpt_index.indices.query.base import BaseGPTIndexQuery
from gpt_index.indices.query.keyword_table.query import (
    GPTKeywordTableGPTQuery,
    GPTKeywordTableRAKEQuery,
    GPTKeywordTableSimpleQuery,
)
from gpt_index.indices.query.schema import QueryMode
from gpt_index.langchain_helpers.chain_wrapper import LLMPredictor
from gpt_index.langchain_helpers.text_splitter import TextSplitter
from gpt_index.prompts.default_prompts import (
    DEFAULT_KEYWORD_EXTRACT_TEMPLATE,
    DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE,
)
from gpt_index.prompts.prompts import KeywordExtractPrompt
from gpt_index.schema import BaseDocument

DQKET = DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE


class BaseGPTKeywordTableIndex(BaseGPTIndex[KeywordTable]):
    """GPT Keyword Table Index.

    This index extracts keywords from the text, and maps each
    keyword to the node(s) that it corresponds to. In this sense it mimicks a
    "hash table". During index construction, the keyword table is constructed
    by extracting keywords from each node and creating an internal mapping.

    During query time, the keywords are extracted from the query text, and these
    keywords are used to index into the keyword table. The retrieved nodes
    are then used to answer the query.

    Args:
        keyword_extract_template (Optional[KeywordExtractPrompt]): A Keyword
            Extraction Prompt
            (see :ref:`Prompt-Templates`).
        use_async (bool): Whether to use asynchronous calls. Defaults to False.

    """

    index_struct_cls = KeywordTable

    def __init__(
        self,
        documents: Optional[Sequence[DOCUMENTS_INPUT]] = None,
        index_struct: Optional[KeywordTable] = None,
        keyword_extract_template: Optional[KeywordExtractPrompt] = None,
        max_keywords_per_chunk: int = 10,
        llm_predictor: Optional[LLMPredictor] = None,
        text_splitter: Optional[TextSplitter] = None,
        use_async: bool = False,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        # need to set parameters before building index in base class.
        self.max_keywords_per_chunk = max_keywords_per_chunk
        self.keyword_extract_template = (
            keyword_extract_template or DEFAULT_KEYWORD_EXTRACT_TEMPLATE
        )
        # NOTE: Partially format keyword extract template here.
        self.keyword_extract_template = self.keyword_extract_template.partial_format(
            max_keywords=self.max_keywords_per_chunk
        )
        self._use_async = use_async
        super().__init__(
            documents=documents,
            index_struct=index_struct,
            llm_predictor=llm_predictor,
            text_splitter=text_splitter,
            **kwargs,
        )

    @classmethod
    def get_query_map(self) -> Dict[str, Type[BaseGPTIndexQuery]]:
        """Get query map."""
        return {
            QueryMode.DEFAULT: GPTKeywordTableGPTQuery,
            QueryMode.SIMPLE: GPTKeywordTableSimpleQuery,
            QueryMode.RAKE: GPTKeywordTableRAKEQuery,
        }

    @abstractmethod
    def _extract_keywords(self, text: str) -> Set[str]:
        """Extract keywords from text."""

    async def _async_extract_keywords(self, text: str) -> Set[str]:
        """Extract keywords from text."""
        # by default just call sync version
        return self._extract_keywords(text)

    def _build_fallback_text_splitter(self) -> TextSplitter:
        # if not specified, use "smart" text splitter to ensure chunks fit in prompt
        return self._prompt_helper.get_text_splitter_given_prompt(
            self.keyword_extract_template, 1
        )

    def _add_document_to_index(
        self, index_struct: KeywordTable, document: BaseDocument
    ) -> None:
        """Add document to index."""
        nodes = self._get_nodes_from_document(document)
        for n in nodes:
            keywords = self._extract_keywords(n.get_text())
            index_struct.add_node(list(keywords), n)

    async def _async_add_document_to_index(
        self, index_struct: KeywordTable, document: BaseDocument
    ) -> None:
        """Add document to index."""
        nodes = self._get_nodes_from_document(document)
        for n in nodes:
            keywords = await self._async_extract_keywords(n.get_text())
            index_struct.add_node(list(keywords), n)

    def _build_index_from_documents(
        self, documents: Sequence[BaseDocument]
    ) -> KeywordTable:
        """Build the index from documents."""
        # do simple concatenation
        index_struct = KeywordTable(table={})
        for d in documents:
            if self._use_async:
                tasks = [
                    self._async_add_document_to_index(index_struct, d)
                    for d in documents
                ]
                run_async_tasks(tasks)
            else:
                self._add_document_to_index(index_struct, d)

        return index_struct

    def _insert(self, document: BaseDocument, **insert_kwargs: Any) -> None:
        """Insert a document."""
        nodes = self._get_nodes_from_document(document)
        for n in nodes:
            keywords = self._extract_keywords(n.get_text())
            self._index_struct.add_node(list(keywords), n)

    def _delete(self, doc_id: str, **delete_kwargs: Any) -> None:
        """Delete a document."""
        # get set of ids that correspond to node
        node_idxs_to_delete = set()
        for node_idx, node in self._index_struct.text_chunks.items():
            if node.ref_doc_id != doc_id:
                continue
            node_idxs_to_delete.add(node_idx)
        for node_idx in node_idxs_to_delete:
            del self._index_struct.text_chunks[node_idx]

        # delete node_idxs from keyword to node idxs mapping
        keywords_to_delete = set()
        for keyword, node_idxs in self._index_struct.table.items():
            if node_idxs_to_delete.intersection(node_idxs):
                self._index_struct.table[keyword] = node_idxs.difference(
                    node_idxs_to_delete
                )
                if not self._index_struct.table[keyword]:
                    keywords_to_delete.add(keyword)

        for keyword in keywords_to_delete:
            del self._index_struct.table[keyword]


class GPTKeywordTableIndex(BaseGPTKeywordTableIndex):
    """GPT Keyword Table Index.

    This index uses a GPT model to extract keywords from the text.

    """

    def _extract_keywords(self, text: str) -> Set[str]:
        """Extract keywords from text."""
        response, _ = self._llm_predictor.predict(
            self.keyword_extract_template,
            text=text,
        )
        keywords = extract_keywords_given_response(response, start_token="KEYWORDS:")
        return keywords

    async def _async_extract_keywords(self, text: str) -> Set[str]:
        """Extract keywords from text."""
        response, _ = await self._llm_predictor.apredict(
            self.keyword_extract_template,
            text=text,
        )
        keywords = extract_keywords_given_response(response, start_token="KEYWORDS:")
        return keywords