File size: 10,068 Bytes
35b22df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""OpenAI embeddings file."""

from enum import Enum
from typing import List, Optional

import openai
from tenacity import retry, stop_after_attempt, wait_random_exponential

from gpt_index.embeddings.base import BaseEmbedding


class OpenAIEmbeddingMode(str, Enum):
    """OpenAI embedding mode."""

    SIMILARITY_MODE = "similarity"
    TEXT_SEARCH_MODE = "text_search"


class OpenAIEmbeddingModelType(str, Enum):
    """OpenAI embedding model type."""

    DAVINCI = "davinci"
    CURIE = "curie"
    BABBAGE = "babbage"
    ADA = "ada"
    TEXT_EMBED_ADA_002 = "text-embedding-ada-002"


class OpenAIEmbeddingModeModel(str, Enum):
    """OpenAI embedding mode model."""

    # davinci
    TEXT_SIMILARITY_DAVINCI = "text-similarity-davinci-001"
    TEXT_SEARCH_DAVINCI_QUERY = "text-search-davinci-query-001"
    TEXT_SEARCH_DAVINCI_DOC = "text-search-davinci-doc-001"

    # curie
    TEXT_SIMILARITY_CURIE = "text-similarity-curie-001"
    TEXT_SEARCH_CURIE_QUERY = "text-search-curie-query-001"
    TEXT_SEARCH_CURIE_DOC = "text-search-curie-doc-001"

    # babbage
    TEXT_SIMILARITY_BABBAGE = "text-similarity-babbage-001"
    TEXT_SEARCH_BABBAGE_QUERY = "text-search-babbage-query-001"
    TEXT_SEARCH_BABBAGE_DOC = "text-search-babbage-doc-001"

    # ada
    TEXT_SIMILARITY_ADA = "text-similarity-ada-001"
    TEXT_SEARCH_ADA_QUERY = "text-search-ada-query-001"
    TEXT_SEARCH_ADA_DOC = "text-search-ada-doc-001"

    # text-embedding-ada-002
    TEXT_EMBED_ADA_002 = "text-embedding-ada-002"


# convenient shorthand
OAEM = OpenAIEmbeddingMode
OAEMT = OpenAIEmbeddingModelType
OAEMM = OpenAIEmbeddingModeModel

EMBED_MAX_TOKEN_LIMIT = 2048


_QUERY_MODE_MODEL_DICT = {
    (OAEM.SIMILARITY_MODE, "davinci"): OAEMM.TEXT_SIMILARITY_DAVINCI,
    (OAEM.SIMILARITY_MODE, "curie"): OAEMM.TEXT_SIMILARITY_CURIE,
    (OAEM.SIMILARITY_MODE, "babbage"): OAEMM.TEXT_SIMILARITY_BABBAGE,
    (OAEM.SIMILARITY_MODE, "ada"): OAEMM.TEXT_SIMILARITY_ADA,
    (OAEM.SIMILARITY_MODE, "text-embedding-ada-002"): OAEMM.TEXT_EMBED_ADA_002,
    (OAEM.TEXT_SEARCH_MODE, "davinci"): OAEMM.TEXT_SEARCH_DAVINCI_QUERY,
    (OAEM.TEXT_SEARCH_MODE, "curie"): OAEMM.TEXT_SEARCH_CURIE_QUERY,
    (OAEM.TEXT_SEARCH_MODE, "babbage"): OAEMM.TEXT_SEARCH_BABBAGE_QUERY,
    (OAEM.TEXT_SEARCH_MODE, "ada"): OAEMM.TEXT_SEARCH_ADA_QUERY,
    (OAEM.TEXT_SEARCH_MODE, "text-embedding-ada-002"): OAEMM.TEXT_EMBED_ADA_002,
}

_TEXT_MODE_MODEL_DICT = {
    (OAEM.SIMILARITY_MODE, "davinci"): OAEMM.TEXT_SIMILARITY_DAVINCI,
    (OAEM.SIMILARITY_MODE, "curie"): OAEMM.TEXT_SIMILARITY_CURIE,
    (OAEM.SIMILARITY_MODE, "babbage"): OAEMM.TEXT_SIMILARITY_BABBAGE,
    (OAEM.SIMILARITY_MODE, "ada"): OAEMM.TEXT_SIMILARITY_ADA,
    (OAEM.SIMILARITY_MODE, "text-embedding-ada-002"): OAEMM.TEXT_EMBED_ADA_002,
    (OAEM.TEXT_SEARCH_MODE, "davinci"): OAEMM.TEXT_SEARCH_DAVINCI_DOC,
    (OAEM.TEXT_SEARCH_MODE, "curie"): OAEMM.TEXT_SEARCH_CURIE_DOC,
    (OAEM.TEXT_SEARCH_MODE, "babbage"): OAEMM.TEXT_SEARCH_BABBAGE_DOC,
    (OAEM.TEXT_SEARCH_MODE, "ada"): OAEMM.TEXT_SEARCH_ADA_DOC,
    (OAEM.TEXT_SEARCH_MODE, "text-embedding-ada-002"): OAEMM.TEXT_EMBED_ADA_002,
}


@retry(wait=wait_random_exponential(min=20, max=60), stop=stop_after_attempt(100))
def get_embedding(
    text: str,
    engine: Optional[str] = None,
) -> List[float]:
    """Get embedding.

    NOTE: Copied from OpenAI's embedding utils:
    https://github.com/openai/openai-python/blob/main/openai/embeddings_utils.py

    Copied here to avoid importing unnecessary dependencies
    like matplotlib, plotly, scipy, sklearn.

    """
    text = text.replace("\n", " ")
    return openai.Embedding.create(input=[text], engine=engine)["data"][0]["embedding"]


@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
async def aget_embedding(text: str, engine: Optional[str] = None) -> List[float]:
    """Asynchronously get embedding.

    NOTE: Copied from OpenAI's embedding utils:
    https://github.com/openai/openai-python/blob/main/openai/embeddings_utils.py

    Copied here to avoid importing unnecessary dependencies
    like matplotlib, plotly, scipy, sklearn.

    """
    # replace newlines, which can negatively affect performance.
    text = text.replace("\n", " ")

    return (await openai.Embedding.acreate(input=[text], engine=engine))["data"][0][
        "embedding"
    ]


@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
def get_embeddings(
    list_of_text: List[str],
    engine: Optional[str] = None,
) -> List[List[float]]:
    """Get embeddings.

    NOTE: Copied from OpenAI's embedding utils:
    https://github.com/openai/openai-python/blob/main/openai/embeddings_utils.py

    Copied here to avoid importing unnecessary dependencies
    like matplotlib, plotly, scipy, sklearn.

    """
    assert len(list_of_text) <= 2048, "The batch size should not be larger than 2048."

    # replace newlines, which can negatively affect performance.
    list_of_text = [text.replace("\n", " ") for text in list_of_text]

    data = openai.Embedding.create(input=list_of_text, engine=engine).data
    data = sorted(data, key=lambda x: x["index"])  # maintain the same order as input.
    return [d["embedding"] for d in data]


@retry(wait=wait_random_exponential(min=1, max=20), stop=stop_after_attempt(6))
async def aget_embeddings(
    list_of_text: List[str], engine: Optional[str] = None
) -> List[List[float]]:
    """Asynchronously get embeddings.

    NOTE: Copied from OpenAI's embedding utils:
    https://github.com/openai/openai-python/blob/main/openai/embeddings_utils.py

    Copied here to avoid importing unnecessary dependencies
    like matplotlib, plotly, scipy, sklearn.

    """
    assert len(list_of_text) <= 2048, "The batch size should not be larger than 2048."

    # replace newlines, which can negatively affect performance.
    list_of_text = [text.replace("\n", " ") for text in list_of_text]

    data = (await openai.Embedding.acreate(input=list_of_text, engine=engine)).data
    data = sorted(data, key=lambda x: x["index"])  # maintain the same order as input.
    return [d["embedding"] for d in data]


class OpenAIEmbedding(BaseEmbedding):
    """OpenAI class for embeddings.

    Args:
        mode (str): Mode for embedding.
            Defaults to OpenAIEmbeddingMode.TEXT_SEARCH_MODE.
            Options are:

            - OpenAIEmbeddingMode.SIMILARITY_MODE
            - OpenAIEmbeddingMode.TEXT_SEARCH_MODE

        model (str): Model for embedding.
            Defaults to OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002.
            Options are:

            - OpenAIEmbeddingModelType.DAVINCI
            - OpenAIEmbeddingModelType.CURIE
            - OpenAIEmbeddingModelType.BABBAGE
            - OpenAIEmbeddingModelType.ADA
            - OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002

        deployment_name (Optional[str]): Optional deployment of model. Defaults to None.
            If this value is not None, mode and model will be ignored.
            Only available for using AzureOpenAI.
    """

    def __init__(
        self,
        mode: str = OpenAIEmbeddingMode.TEXT_SEARCH_MODE,
        model: str = OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002,
        deployment_name: Optional[str] = None,
    ) -> None:
        """Init params."""
        super().__init__()
        self.mode = OpenAIEmbeddingMode(mode)
        self.model = OpenAIEmbeddingModelType(model)
        self.deployment_name = deployment_name

    def _get_query_embedding(self, query: str) -> List[float]:
        """Get query embedding."""
        if self.deployment_name is not None:
            engine = self.deployment_name
        else:
            key = (self.mode, self.model)
            if key not in _QUERY_MODE_MODEL_DICT:
                raise ValueError(f"Invalid mode, model combination: {key}")
            engine = _QUERY_MODE_MODEL_DICT[key]
        return get_embedding(query, engine=engine)

    def _get_text_embedding(self, text: str) -> List[float]:
        """Get text embedding."""
        if self.deployment_name is not None:
            engine = self.deployment_name
        else:
            key = (self.mode, self.model)
            if key not in _TEXT_MODE_MODEL_DICT:
                raise ValueError(f"Invalid mode, model combination: {key}")
            engine = _TEXT_MODE_MODEL_DICT[key]
        return get_embedding(text, engine=engine)

    async def _aget_text_embedding(self, text: str) -> List[float]:
        """Asynchronously get text embedding."""
        if self.deployment_name is not None:
            engine = self.deployment_name
        else:
            key = (self.mode, self.model)
            if key not in _TEXT_MODE_MODEL_DICT:
                raise ValueError(f"Invalid mode, model combination: {key}")
            engine = _TEXT_MODE_MODEL_DICT[key]
        return await aget_embedding(text, engine=engine)

    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """Get text embeddings.

        By default, this is a wrapper around _get_text_embedding.
        Can be overriden for batch queries.

        """
        if self.deployment_name is not None:
            engine = self.deployment_name
        else:
            key = (self.mode, self.model)
            if key not in _TEXT_MODE_MODEL_DICT:
                raise ValueError(f"Invalid mode, model combination: {key}")
            engine = _TEXT_MODE_MODEL_DICT[key]
        embeddings = get_embeddings(texts, engine=engine)
        return embeddings

    async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        """Asynchronously get text embeddings."""
        if self.deployment_name is not None:
            engine = self.deployment_name
        else:
            key = (self.mode, self.model)
            if key not in _TEXT_MODE_MODEL_DICT:
                raise ValueError(f"Invalid mode, model combination: {key}")
            engine = _TEXT_MODE_MODEL_DICT[key]
        embeddings = await aget_embeddings(texts, engine=engine)
        return embeddings