|
|
|
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' |
|
|
|
import os |
|
import librosa |
|
import soundfile as sf |
|
import numpy as np |
|
import argparse |
|
|
|
def stft(wave, nfft, hl): |
|
wave_left = np.asfortranarray(wave[0]) |
|
wave_right = np.asfortranarray(wave[1]) |
|
spec_left = librosa.stft(wave_left, n_fft=nfft, hop_length=hl) |
|
spec_right = librosa.stft(wave_right, n_fft=nfft, hop_length=hl) |
|
spec = np.asfortranarray([spec_left, spec_right]) |
|
return spec |
|
|
|
def istft(spec, hl, length): |
|
spec_left = np.asfortranarray(spec[0]) |
|
spec_right = np.asfortranarray(spec[1]) |
|
wave_left = librosa.istft(spec_left, hop_length=hl, length=length) |
|
wave_right = librosa.istft(spec_right, hop_length=hl, length=length) |
|
wave = np.asfortranarray([wave_left, wave_right]) |
|
return wave |
|
|
|
def absmax(a, *, axis): |
|
dims = list(a.shape) |
|
dims.pop(axis) |
|
indices = list(np.ogrid[tuple(slice(0, d) for d in dims)]) |
|
argmax = np.abs(a).argmax(axis=axis) |
|
insert_pos = (len(a.shape) + axis) % len(a.shape) |
|
indices.insert(insert_pos, argmax) |
|
return a[tuple(indices)] |
|
|
|
def absmin(a, *, axis): |
|
dims = list(a.shape) |
|
dims.pop(axis) |
|
indices = list(np.ogrid[tuple(slice(0, d) for d in dims)]) |
|
argmax = np.abs(a).argmin(axis=axis) |
|
insert_pos = (len(a.shape) + axis) % len(a.shape) |
|
indices.insert(insert_pos, argmax) |
|
return a[tuple(indices)] |
|
|
|
def lambda_max(arr, axis=None, key=None, keepdims=False): |
|
idxs = np.argmax(key(arr), axis) |
|
if axis is not None: |
|
idxs = np.expand_dims(idxs, axis) |
|
result = np.take_along_axis(arr, idxs, axis) |
|
if not keepdims: |
|
result = np.squeeze(result, axis=axis) |
|
return result |
|
else: |
|
return arr.flatten()[idxs] |
|
|
|
def lambda_min(arr, axis=None, key=None, keepdims=False): |
|
idxs = np.argmin(key(arr), axis) |
|
if axis is not None: |
|
idxs = np.expand_dims(idxs, axis) |
|
result = np.take_along_axis(arr, idxs, axis) |
|
if not keepdims: |
|
result = np.squeeze(result, axis=axis) |
|
return result |
|
else: |
|
return arr.flatten()[idxs] |
|
|
|
def average_waveforms(pred_track, weights, algorithm): |
|
""" |
|
:param pred_track: shape = (num, channels, length) |
|
:param weights: shape = (num, ) |
|
:param algorithm: One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft |
|
:return: averaged waveform in shape (channels, length) |
|
""" |
|
pred_track = np.array(pred_track) |
|
final_length = pred_track.shape[-1] |
|
|
|
mod_track = [] |
|
for i in range(pred_track.shape[0]): |
|
if algorithm == 'avg_wave': |
|
mod_track.append(pred_track[i] * weights[i]) |
|
elif algorithm in ['median_wave', 'min_wave', 'max_wave']: |
|
mod_track.append(pred_track[i]) |
|
elif algorithm in ['avg_fft', 'min_fft', 'max_fft', 'median_fft']: |
|
spec = stft(pred_track[i], nfft=2048, hl=1024) |
|
if algorithm in ['avg_fft']: |
|
mod_track.append(spec * weights[i]) |
|
else: |
|
mod_track.append(spec) |
|
pred_track = np.array(mod_track) |
|
|
|
if algorithm in ['avg_wave']: |
|
pred_track = pred_track.sum(axis=0) |
|
pred_track /= np.array(weights).sum().T |
|
elif algorithm in ['median_wave']: |
|
pred_track = np.median(pred_track, axis=0) |
|
elif algorithm in ['min_wave']: |
|
pred_track = lambda_min(pred_track, axis=0, key=np.abs) |
|
elif algorithm in ['max_wave']: |
|
pred_track = lambda_max(pred_track, axis=0, key=np.abs) |
|
elif algorithm in ['avg_fft']: |
|
pred_track = pred_track.sum(axis=0) |
|
pred_track /= np.array(weights).sum() |
|
pred_track = istft(pred_track, 1024, final_length) |
|
elif algorithm in ['min_fft']: |
|
pred_track = lambda_min(pred_track, axis=0, key=np.abs) |
|
pred_track = istft(pred_track, 1024, final_length) |
|
elif algorithm in ['max_fft']: |
|
pred_track = absmax(pred_track, axis=0) |
|
pred_track = istft(pred_track, 1024, final_length) |
|
elif algorithm in ['median_fft']: |
|
pred_track = np.median(pred_track, axis=0) |
|
pred_track = istft(pred_track, 1024, final_length) |
|
return pred_track |
|
|
|
def ensemble_files(args): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--files", type=str, required=True, nargs='+', help="Path to all audio-files to ensemble") |
|
parser.add_argument("--type", type=str, default='avg_wave', help="One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft") |
|
parser.add_argument("--weights", type=float, nargs='+', help="Weights to create ensemble. Number of weights must be equal to number of files") |
|
parser.add_argument("--output", default="res.wav", type=str, help="Path to wav file where ensemble result will be stored") |
|
args = parser.parse_args(args) if isinstance(args, list) else parser.parse_args() |
|
|
|
print('Ensemble type: {}'.format(args.type)) |
|
print('Number of input files: {}'.format(len(args.files))) |
|
if args.weights is not None: |
|
weights = args.weights |
|
else: |
|
weights = np.ones(len(args.files)) |
|
print('Weights: {}'.format(weights)) |
|
print('Output file: {}'.format(args.output)) |
|
|
|
data = [] |
|
for f in args.files: |
|
if not os.path.isfile(f): |
|
print('Error. Can\'t find file: {}. Check paths.'.format(f)) |
|
return None |
|
print('Reading file: {}'.format(f)) |
|
wav, sr = librosa.load(f, sr=None, mono=False) |
|
print("Waveform shape: {} sample rate: {}".format(wav.shape, sr)) |
|
data.append(wav) |
|
|
|
data = np.array(data) |
|
res = average_waveforms(data, weights, args.type) |
|
print('Result shape: {}'.format(res.shape)) |
|
sf.write(args.output, res.T, sr, 'FLOAT') |
|
return args.output |
|
|
|
if __name__ == "__main__": |
|
ensemble_files(None) |