File size: 5,843 Bytes
0bac694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import os
import librosa
import soundfile as sf
import numpy as np
import argparse
def stft(wave, nfft, hl):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft=nfft, hop_length=hl)
spec_right = librosa.stft(wave_right, n_fft=nfft, hop_length=hl)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def istft(spec, hl, length):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hl, length=length)
wave_right = librosa.istft(spec_right, hop_length=hl, length=length)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def absmax(a, *, axis):
dims = list(a.shape)
dims.pop(axis)
indices = list(np.ogrid[tuple(slice(0, d) for d in dims)])
argmax = np.abs(a).argmax(axis=axis)
insert_pos = (len(a.shape) + axis) % len(a.shape)
indices.insert(insert_pos, argmax)
return a[tuple(indices)]
def absmin(a, *, axis):
dims = list(a.shape)
dims.pop(axis)
indices = list(np.ogrid[tuple(slice(0, d) for d in dims)])
argmax = np.abs(a).argmin(axis=axis)
insert_pos = (len(a.shape) + axis) % len(a.shape)
indices.insert(insert_pos, argmax)
return a[tuple(indices)]
def lambda_max(arr, axis=None, key=None, keepdims=False):
idxs = np.argmax(key(arr), axis)
if axis is not None:
idxs = np.expand_dims(idxs, axis)
result = np.take_along_axis(arr, idxs, axis)
if not keepdims:
result = np.squeeze(result, axis=axis)
return result
else:
return arr.flatten()[idxs]
def lambda_min(arr, axis=None, key=None, keepdims=False):
idxs = np.argmin(key(arr), axis)
if axis is not None:
idxs = np.expand_dims(idxs, axis)
result = np.take_along_axis(arr, idxs, axis)
if not keepdims:
result = np.squeeze(result, axis=axis)
return result
else:
return arr.flatten()[idxs]
def average_waveforms(pred_track, weights, algorithm):
"""
:param pred_track: shape = (num, channels, length)
:param weights: shape = (num, )
:param algorithm: One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft
:return: averaged waveform in shape (channels, length)
"""
pred_track = np.array(pred_track)
final_length = pred_track.shape[-1]
mod_track = []
for i in range(pred_track.shape[0]):
if algorithm == 'avg_wave':
mod_track.append(pred_track[i] * weights[i])
elif algorithm in ['median_wave', 'min_wave', 'max_wave']:
mod_track.append(pred_track[i])
elif algorithm in ['avg_fft', 'min_fft', 'max_fft', 'median_fft']:
spec = stft(pred_track[i], nfft=2048, hl=1024)
if algorithm in ['avg_fft']:
mod_track.append(spec * weights[i])
else:
mod_track.append(spec)
pred_track = np.array(mod_track)
if algorithm in ['avg_wave']:
pred_track = pred_track.sum(axis=0)
pred_track /= np.array(weights).sum().T
elif algorithm in ['median_wave']:
pred_track = np.median(pred_track, axis=0)
elif algorithm in ['min_wave']:
pred_track = lambda_min(pred_track, axis=0, key=np.abs)
elif algorithm in ['max_wave']:
pred_track = lambda_max(pred_track, axis=0, key=np.abs)
elif algorithm in ['avg_fft']:
pred_track = pred_track.sum(axis=0)
pred_track /= np.array(weights).sum()
pred_track = istft(pred_track, 1024, final_length)
elif algorithm in ['min_fft']:
pred_track = lambda_min(pred_track, axis=0, key=np.abs)
pred_track = istft(pred_track, 1024, final_length)
elif algorithm in ['max_fft']:
pred_track = absmax(pred_track, axis=0)
pred_track = istft(pred_track, 1024, final_length)
elif algorithm in ['median_fft']:
pred_track = np.median(pred_track, axis=0)
pred_track = istft(pred_track, 1024, final_length)
return pred_track
def ensemble_files(args):
parser = argparse.ArgumentParser()
parser.add_argument("--files", type=str, required=True, nargs='+', help="Path to all audio-files to ensemble")
parser.add_argument("--type", type=str, default='avg_wave', help="One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft")
parser.add_argument("--weights", type=float, nargs='+', help="Weights to create ensemble. Number of weights must be equal to number of files")
parser.add_argument("--output", default="res.wav", type=str, help="Path to wav file where ensemble result will be stored")
args = parser.parse_args(args) if isinstance(args, list) else parser.parse_args()
print('Ensemble type: {}'.format(args.type))
print('Number of input files: {}'.format(len(args.files)))
if args.weights is not None:
weights = args.weights
else:
weights = np.ones(len(args.files))
print('Weights: {}'.format(weights))
print('Output file: {}'.format(args.output))
data = []
for f in args.files:
if not os.path.isfile(f):
print('Error. Can\'t find file: {}. Check paths.'.format(f))
return None
print('Reading file: {}'.format(f))
wav, sr = librosa.load(f, sr=None, mono=False)
print("Waveform shape: {} sample rate: {}".format(wav.shape, sr))
data.append(wav)
data = np.array(data)
res = average_waveforms(data, weights, args.type)
print('Result shape: {}'.format(res.shape))
sf.write(args.output, res.T, sr, 'FLOAT')
return args.output
if __name__ == "__main__":
ensemble_files(None) |