File size: 5,843 Bytes
0bac694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'

import os
import librosa
import soundfile as sf
import numpy as np
import argparse

def stft(wave, nfft, hl):
    wave_left = np.asfortranarray(wave[0])
    wave_right = np.asfortranarray(wave[1])
    spec_left = librosa.stft(wave_left, n_fft=nfft, hop_length=hl)
    spec_right = librosa.stft(wave_right, n_fft=nfft, hop_length=hl)
    spec = np.asfortranarray([spec_left, spec_right])
    return spec

def istft(spec, hl, length):
    spec_left = np.asfortranarray(spec[0])
    spec_right = np.asfortranarray(spec[1])
    wave_left = librosa.istft(spec_left, hop_length=hl, length=length)
    wave_right = librosa.istft(spec_right, hop_length=hl, length=length)
    wave = np.asfortranarray([wave_left, wave_right])
    return wave

def absmax(a, *, axis):
    dims = list(a.shape)
    dims.pop(axis)
    indices = list(np.ogrid[tuple(slice(0, d) for d in dims)])
    argmax = np.abs(a).argmax(axis=axis)
    insert_pos = (len(a.shape) + axis) % len(a.shape)
    indices.insert(insert_pos, argmax)
    return a[tuple(indices)]

def absmin(a, *, axis):
    dims = list(a.shape)
    dims.pop(axis)
    indices = list(np.ogrid[tuple(slice(0, d) for d in dims)])
    argmax = np.abs(a).argmin(axis=axis)
    insert_pos = (len(a.shape) + axis) % len(a.shape)
    indices.insert(insert_pos, argmax)
    return a[tuple(indices)]

def lambda_max(arr, axis=None, key=None, keepdims=False):
    idxs = np.argmax(key(arr), axis)
    if axis is not None:
        idxs = np.expand_dims(idxs, axis)
        result = np.take_along_axis(arr, idxs, axis)
        if not keepdims:
            result = np.squeeze(result, axis=axis)
        return result
    else:
        return arr.flatten()[idxs]

def lambda_min(arr, axis=None, key=None, keepdims=False):
    idxs = np.argmin(key(arr), axis)
    if axis is not None:
        idxs = np.expand_dims(idxs, axis)
        result = np.take_along_axis(arr, idxs, axis)
        if not keepdims:
            result = np.squeeze(result, axis=axis)
        return result
    else:
        return arr.flatten()[idxs]

def average_waveforms(pred_track, weights, algorithm):
    """
    :param pred_track: shape = (num, channels, length)
    :param weights: shape = (num, )
    :param algorithm: One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft
    :return: averaged waveform in shape (channels, length)
    """
    pred_track = np.array(pred_track)
    final_length = pred_track.shape[-1]

    mod_track = []
    for i in range(pred_track.shape[0]):
        if algorithm == 'avg_wave':
            mod_track.append(pred_track[i] * weights[i])
        elif algorithm in ['median_wave', 'min_wave', 'max_wave']:
            mod_track.append(pred_track[i])
        elif algorithm in ['avg_fft', 'min_fft', 'max_fft', 'median_fft']:
            spec = stft(pred_track[i], nfft=2048, hl=1024)
            if algorithm in ['avg_fft']:
                mod_track.append(spec * weights[i])
            else:
                mod_track.append(spec)
    pred_track = np.array(mod_track)

    if algorithm in ['avg_wave']:
        pred_track = pred_track.sum(axis=0)
        pred_track /= np.array(weights).sum().T
    elif algorithm in ['median_wave']:
        pred_track = np.median(pred_track, axis=0)
    elif algorithm in ['min_wave']:
        pred_track = lambda_min(pred_track, axis=0, key=np.abs)
    elif algorithm in ['max_wave']:
        pred_track = lambda_max(pred_track, axis=0, key=np.abs)
    elif algorithm in ['avg_fft']:
        pred_track = pred_track.sum(axis=0)
        pred_track /= np.array(weights).sum()
        pred_track = istft(pred_track, 1024, final_length)
    elif algorithm in ['min_fft']:
        pred_track = lambda_min(pred_track, axis=0, key=np.abs)
        pred_track = istft(pred_track, 1024, final_length)
    elif algorithm in ['max_fft']:
        pred_track = absmax(pred_track, axis=0)
        pred_track = istft(pred_track, 1024, final_length)
    elif algorithm in ['median_fft']:
        pred_track = np.median(pred_track, axis=0)
        pred_track = istft(pred_track, 1024, final_length)
    return pred_track

def ensemble_files(args):
    parser = argparse.ArgumentParser()
    parser.add_argument("--files", type=str, required=True, nargs='+', help="Path to all audio-files to ensemble")
    parser.add_argument("--type", type=str, default='avg_wave', help="One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft")
    parser.add_argument("--weights", type=float, nargs='+', help="Weights to create ensemble. Number of weights must be equal to number of files")
    parser.add_argument("--output", default="res.wav", type=str, help="Path to wav file where ensemble result will be stored")
    args = parser.parse_args(args) if isinstance(args, list) else parser.parse_args()

    print('Ensemble type: {}'.format(args.type))
    print('Number of input files: {}'.format(len(args.files)))
    if args.weights is not None:
        weights = args.weights
    else:
        weights = np.ones(len(args.files))
    print('Weights: {}'.format(weights))
    print('Output file: {}'.format(args.output))
    
    data = []
    for f in args.files:
        if not os.path.isfile(f):
            print('Error. Can\'t find file: {}. Check paths.'.format(f))
            return None
        print('Reading file: {}'.format(f))
        wav, sr = librosa.load(f, sr=None, mono=False)
        print("Waveform shape: {} sample rate: {}".format(wav.shape, sr))
        data.append(wav)
    
    data = np.array(data)
    res = average_waveforms(data, weights, args.type)
    print('Result shape: {}'.format(res.shape))
    sf.write(args.output, res.T, sr, 'FLOAT')
    return args.output

if __name__ == "__main__":
    ensemble_files(None)