|
from functools import partial |
|
|
|
import torch |
|
from torch import nn, einsum, Tensor |
|
from torch.nn import Module, ModuleList |
|
import torch.nn.functional as F |
|
|
|
from models.bs_roformer.attend import Attend |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from beartype.typing import Tuple, Optional, List, Callable |
|
from beartype import beartype |
|
|
|
from rotary_embedding_torch import RotaryEmbedding |
|
|
|
from einops import rearrange, pack, unpack, reduce, repeat |
|
from einops.layers.torch import Rearrange |
|
|
|
from librosa import filters |
|
|
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def default(v, d): |
|
return v if exists(v) else d |
|
|
|
|
|
def pack_one(t, pattern): |
|
return pack([t], pattern) |
|
|
|
|
|
def unpack_one(t, ps, pattern): |
|
return unpack(t, ps, pattern)[0] |
|
|
|
|
|
def pad_at_dim(t, pad, dim=-1, value=0.): |
|
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) |
|
zeros = ((0, 0) * dims_from_right) |
|
return F.pad(t, (*zeros, *pad), value=value) |
|
|
|
|
|
def l2norm(t): |
|
return F.normalize(t, dim=-1, p=2) |
|
|
|
|
|
|
|
|
|
class RMSNorm(Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.scale = dim ** 0.5 |
|
self.gamma = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
return F.normalize(x, dim=-1) * self.scale * self.gamma |
|
|
|
|
|
|
|
|
|
class FeedForward(Module): |
|
def __init__( |
|
self, |
|
dim, |
|
mult=4, |
|
dropout=0. |
|
): |
|
super().__init__() |
|
dim_inner = int(dim * mult) |
|
self.net = nn.Sequential( |
|
RMSNorm(dim), |
|
nn.Linear(dim, dim_inner), |
|
nn.GELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(dim_inner, dim), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class Attention(Module): |
|
def __init__( |
|
self, |
|
dim, |
|
heads=8, |
|
dim_head=64, |
|
dropout=0., |
|
rotary_embed=None, |
|
flash=True |
|
): |
|
super().__init__() |
|
self.heads = heads |
|
self.scale = dim_head ** -0.5 |
|
dim_inner = heads * dim_head |
|
|
|
self.rotary_embed = rotary_embed |
|
|
|
self.attend = Attend(flash=flash, dropout=dropout) |
|
|
|
self.norm = RMSNorm(dim) |
|
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False) |
|
|
|
self.to_gates = nn.Linear(dim, heads) |
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(dim_inner, dim, bias=False), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
|
|
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads) |
|
|
|
if exists(self.rotary_embed): |
|
q = self.rotary_embed.rotate_queries_or_keys(q) |
|
k = self.rotary_embed.rotate_queries_or_keys(k) |
|
|
|
out = self.attend(q, k, v) |
|
|
|
gates = self.to_gates(x) |
|
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid() |
|
|
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
return self.to_out(out) |
|
|
|
|
|
class LinearAttention(Module): |
|
""" |
|
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al. |
|
""" |
|
|
|
@beartype |
|
def __init__( |
|
self, |
|
*, |
|
dim, |
|
dim_head=32, |
|
heads=8, |
|
scale=8, |
|
flash=False, |
|
dropout=0. |
|
): |
|
super().__init__() |
|
dim_inner = dim_head * heads |
|
self.norm = RMSNorm(dim) |
|
|
|
self.to_qkv = nn.Sequential( |
|
nn.Linear(dim, dim_inner * 3, bias=False), |
|
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads) |
|
) |
|
|
|
self.temperature = nn.Parameter(torch.ones(heads, 1, 1)) |
|
|
|
self.attend = Attend( |
|
scale=scale, |
|
dropout=dropout, |
|
flash=flash |
|
) |
|
|
|
self.to_out = nn.Sequential( |
|
Rearrange('b h d n -> b n (h d)'), |
|
nn.Linear(dim_inner, dim, bias=False) |
|
) |
|
|
|
def forward( |
|
self, |
|
x |
|
): |
|
x = self.norm(x) |
|
|
|
q, k, v = self.to_qkv(x) |
|
|
|
q, k = map(l2norm, (q, k)) |
|
q = q * self.temperature.exp() |
|
|
|
out = self.attend(q, k, v) |
|
|
|
return self.to_out(out) |
|
|
|
|
|
class Transformer(Module): |
|
def __init__( |
|
self, |
|
*, |
|
dim, |
|
depth, |
|
dim_head=64, |
|
heads=8, |
|
attn_dropout=0., |
|
ff_dropout=0., |
|
ff_mult=4, |
|
norm_output=True, |
|
rotary_embed=None, |
|
flash_attn=True, |
|
linear_attn=False |
|
): |
|
super().__init__() |
|
self.layers = ModuleList([]) |
|
|
|
for _ in range(depth): |
|
if linear_attn: |
|
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn) |
|
else: |
|
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, |
|
rotary_embed=rotary_embed, flash=flash_attn) |
|
|
|
self.layers.append(ModuleList([ |
|
attn, |
|
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout) |
|
])) |
|
|
|
self.norm = RMSNorm(dim) if norm_output else nn.Identity() |
|
|
|
def forward(self, x): |
|
|
|
for attn, ff in self.layers: |
|
x = attn(x) + x |
|
x = ff(x) + x |
|
|
|
return self.norm(x) |
|
|
|
|
|
|
|
|
|
class BandSplit(Module): |
|
@beartype |
|
def __init__( |
|
self, |
|
dim, |
|
dim_inputs: Tuple[int, ...] |
|
): |
|
super().__init__() |
|
self.dim_inputs = dim_inputs |
|
self.to_features = ModuleList([]) |
|
|
|
for dim_in in dim_inputs: |
|
net = nn.Sequential( |
|
RMSNorm(dim_in), |
|
nn.Linear(dim_in, dim) |
|
) |
|
|
|
self.to_features.append(net) |
|
|
|
def forward(self, x): |
|
x = x.split(self.dim_inputs, dim=-1) |
|
|
|
outs = [] |
|
for split_input, to_feature in zip(x, self.to_features): |
|
split_output = to_feature(split_input) |
|
outs.append(split_output) |
|
|
|
return torch.stack(outs, dim=-2) |
|
|
|
|
|
def MLP( |
|
dim_in, |
|
dim_out, |
|
dim_hidden=None, |
|
depth=1, |
|
activation=nn.Tanh |
|
): |
|
dim_hidden = default(dim_hidden, dim_in) |
|
|
|
net = [] |
|
dims = (dim_in, *((dim_hidden,) * depth), dim_out) |
|
|
|
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])): |
|
is_last = ind == (len(dims) - 2) |
|
|
|
net.append(nn.Linear(layer_dim_in, layer_dim_out)) |
|
|
|
if is_last: |
|
continue |
|
|
|
net.append(activation()) |
|
|
|
return nn.Sequential(*net) |
|
|
|
|
|
class MaskEstimator(Module): |
|
@beartype |
|
def __init__( |
|
self, |
|
dim, |
|
dim_inputs: Tuple[int, ...], |
|
depth, |
|
mlp_expansion_factor=4 |
|
): |
|
super().__init__() |
|
self.dim_inputs = dim_inputs |
|
self.to_freqs = ModuleList([]) |
|
dim_hidden = dim * mlp_expansion_factor |
|
|
|
for dim_in in dim_inputs: |
|
net = [] |
|
|
|
mlp = nn.Sequential( |
|
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth), |
|
nn.GLU(dim=-1) |
|
) |
|
|
|
self.to_freqs.append(mlp) |
|
|
|
def forward(self, x): |
|
x = x.unbind(dim=-2) |
|
|
|
outs = [] |
|
|
|
for band_features, mlp in zip(x, self.to_freqs): |
|
freq_out = mlp(band_features) |
|
outs.append(freq_out) |
|
|
|
return torch.cat(outs, dim=-1) |
|
|
|
|
|
|
|
|
|
class MelBandRoformer(Module): |
|
|
|
@beartype |
|
def __init__( |
|
self, |
|
dim, |
|
*, |
|
depth, |
|
stereo=False, |
|
num_stems=1, |
|
time_transformer_depth=2, |
|
freq_transformer_depth=2, |
|
linear_transformer_depth=0, |
|
num_bands=60, |
|
dim_head=64, |
|
heads=8, |
|
attn_dropout=0.1, |
|
ff_dropout=0.1, |
|
flash_attn=True, |
|
dim_freqs_in=1025, |
|
sample_rate=44100, |
|
stft_n_fft=2048, |
|
stft_hop_length=512, |
|
|
|
stft_win_length=2048, |
|
stft_normalized=False, |
|
stft_window_fn: Optional[Callable] = None, |
|
mask_estimator_depth=1, |
|
multi_stft_resolution_loss_weight=1., |
|
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256), |
|
multi_stft_hop_size=147, |
|
multi_stft_normalized=False, |
|
multi_stft_window_fn: Callable = torch.hann_window, |
|
match_input_audio_length=False, |
|
mlp_expansion_factor=4, |
|
use_torch_checkpoint=False, |
|
skip_connection=False, |
|
): |
|
super().__init__() |
|
|
|
self.stereo = stereo |
|
self.audio_channels = 2 if stereo else 1 |
|
self.num_stems = num_stems |
|
self.use_torch_checkpoint = use_torch_checkpoint |
|
self.skip_connection = skip_connection |
|
|
|
self.layers = ModuleList([]) |
|
|
|
transformer_kwargs = dict( |
|
dim=dim, |
|
heads=heads, |
|
dim_head=dim_head, |
|
attn_dropout=attn_dropout, |
|
ff_dropout=ff_dropout, |
|
flash_attn=flash_attn |
|
) |
|
|
|
time_rotary_embed = RotaryEmbedding(dim=dim_head) |
|
freq_rotary_embed = RotaryEmbedding(dim=dim_head) |
|
|
|
for _ in range(depth): |
|
tran_modules = [] |
|
if linear_transformer_depth > 0: |
|
tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs)) |
|
tran_modules.append( |
|
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs) |
|
) |
|
tran_modules.append( |
|
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs) |
|
) |
|
self.layers.append(nn.ModuleList(tran_modules)) |
|
|
|
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length) |
|
|
|
self.stft_kwargs = dict( |
|
n_fft=stft_n_fft, |
|
hop_length=stft_hop_length, |
|
win_length=stft_win_length, |
|
normalized=stft_normalized |
|
) |
|
|
|
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_n_fft), return_complex=True).shape[1] |
|
|
|
|
|
|
|
|
|
mel_filter_bank_numpy = filters.mel(sr=sample_rate, n_fft=stft_n_fft, n_mels=num_bands) |
|
|
|
mel_filter_bank = torch.from_numpy(mel_filter_bank_numpy) |
|
|
|
|
|
|
|
mel_filter_bank[0][0] = 1. |
|
|
|
|
|
|
|
|
|
mel_filter_bank[-1, -1] = 1. |
|
|
|
|
|
|
|
freqs_per_band = mel_filter_bank > 0 |
|
assert freqs_per_band.any(dim=0).all(), 'all frequencies need to be covered by all bands for now' |
|
|
|
repeated_freq_indices = repeat(torch.arange(freqs), 'f -> b f', b=num_bands) |
|
freq_indices = repeated_freq_indices[freqs_per_band] |
|
|
|
if stereo: |
|
freq_indices = repeat(freq_indices, 'f -> f s', s=2) |
|
freq_indices = freq_indices * 2 + torch.arange(2) |
|
freq_indices = rearrange(freq_indices, 'f s -> (f s)') |
|
|
|
self.register_buffer('freq_indices', freq_indices, persistent=False) |
|
self.register_buffer('freqs_per_band', freqs_per_band, persistent=False) |
|
|
|
num_freqs_per_band = reduce(freqs_per_band, 'b f -> b', 'sum') |
|
num_bands_per_freq = reduce(freqs_per_band, 'b f -> f', 'sum') |
|
|
|
self.register_buffer('num_freqs_per_band', num_freqs_per_band, persistent=False) |
|
self.register_buffer('num_bands_per_freq', num_bands_per_freq, persistent=False) |
|
|
|
|
|
|
|
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in num_freqs_per_band.tolist()) |
|
|
|
self.band_split = BandSplit( |
|
dim=dim, |
|
dim_inputs=freqs_per_bands_with_complex |
|
) |
|
|
|
self.mask_estimators = nn.ModuleList([]) |
|
|
|
for _ in range(num_stems): |
|
mask_estimator = MaskEstimator( |
|
dim=dim, |
|
dim_inputs=freqs_per_bands_with_complex, |
|
depth=mask_estimator_depth, |
|
mlp_expansion_factor=mlp_expansion_factor, |
|
) |
|
|
|
self.mask_estimators.append(mask_estimator) |
|
|
|
|
|
|
|
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight |
|
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes |
|
self.multi_stft_n_fft = stft_n_fft |
|
self.multi_stft_window_fn = multi_stft_window_fn |
|
|
|
self.multi_stft_kwargs = dict( |
|
hop_length=multi_stft_hop_size, |
|
normalized=multi_stft_normalized |
|
) |
|
|
|
self.match_input_audio_length = match_input_audio_length |
|
|
|
def forward( |
|
self, |
|
raw_audio, |
|
target=None, |
|
return_loss_breakdown=False |
|
): |
|
""" |
|
einops |
|
|
|
b - batch |
|
f - freq |
|
t - time |
|
s - audio channel (1 for mono, 2 for stereo) |
|
n - number of 'stems' |
|
c - complex (2) |
|
d - feature dimension |
|
""" |
|
|
|
device = raw_audio.device |
|
|
|
if raw_audio.ndim == 2: |
|
raw_audio = rearrange(raw_audio, 'b t -> b 1 t') |
|
|
|
batch, channels, raw_audio_length = raw_audio.shape |
|
|
|
istft_length = raw_audio_length if self.match_input_audio_length else None |
|
|
|
assert (not self.stereo and channels == 1) or ( |
|
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)' |
|
|
|
|
|
|
|
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t') |
|
|
|
stft_window = self.stft_window_fn(device=device) |
|
|
|
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True) |
|
stft_repr = torch.view_as_real(stft_repr) |
|
|
|
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c') |
|
|
|
|
|
stft_repr = rearrange(stft_repr,'b s f t c -> b (f s) t c') |
|
|
|
|
|
|
|
batch_arange = torch.arange(batch, device=device)[..., None] |
|
|
|
|
|
|
|
x = stft_repr[batch_arange, self.freq_indices] |
|
|
|
|
|
|
|
x = rearrange(x, 'b f t c -> b t (f c)') |
|
|
|
if self.use_torch_checkpoint: |
|
x = checkpoint(self.band_split, x, use_reentrant=False) |
|
else: |
|
x = self.band_split(x) |
|
|
|
|
|
|
|
store = [None] * len(self.layers) |
|
for i, transformer_block in enumerate(self.layers): |
|
|
|
if len(transformer_block) == 3: |
|
linear_transformer, time_transformer, freq_transformer = transformer_block |
|
|
|
x, ft_ps = pack([x], 'b * d') |
|
if self.use_torch_checkpoint: |
|
x = checkpoint(linear_transformer, x, use_reentrant=False) |
|
else: |
|
x = linear_transformer(x) |
|
x, = unpack(x, ft_ps, 'b * d') |
|
else: |
|
time_transformer, freq_transformer = transformer_block |
|
|
|
if self.skip_connection: |
|
|
|
for j in range(i): |
|
x = x + store[j] |
|
|
|
x = rearrange(x, 'b t f d -> b f t d') |
|
x, ps = pack([x], '* t d') |
|
|
|
if self.use_torch_checkpoint: |
|
x = checkpoint(time_transformer, x, use_reentrant=False) |
|
else: |
|
x = time_transformer(x) |
|
|
|
x, = unpack(x, ps, '* t d') |
|
x = rearrange(x, 'b f t d -> b t f d') |
|
x, ps = pack([x], '* f d') |
|
|
|
if self.use_torch_checkpoint: |
|
x = checkpoint(freq_transformer, x, use_reentrant=False) |
|
else: |
|
x = freq_transformer(x) |
|
|
|
x, = unpack(x, ps, '* f d') |
|
|
|
if self.skip_connection: |
|
store[i] = x |
|
|
|
num_stems = len(self.mask_estimators) |
|
if self.use_torch_checkpoint: |
|
masks = torch.stack([checkpoint(fn, x, use_reentrant=False) for fn in self.mask_estimators], dim=1) |
|
else: |
|
masks = torch.stack([fn(x) for fn in self.mask_estimators], dim=1) |
|
masks = rearrange(masks, 'b n t (f c) -> b n f t c', c=2) |
|
|
|
|
|
|
|
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c') |
|
|
|
|
|
|
|
stft_repr = torch.view_as_complex(stft_repr) |
|
masks = torch.view_as_complex(masks) |
|
|
|
masks = masks.type(stft_repr.dtype) |
|
|
|
|
|
|
|
scatter_indices = repeat(self.freq_indices, 'f -> b n f t', b=batch, n=num_stems, t=stft_repr.shape[-1]) |
|
|
|
stft_repr_expanded_stems = repeat(stft_repr, 'b 1 ... -> b n ...', n=num_stems) |
|
masks_summed = torch.zeros_like(stft_repr_expanded_stems).scatter_add_(2, scatter_indices, masks) |
|
|
|
denom = repeat(self.num_bands_per_freq, 'f -> (f r) 1', r=channels) |
|
|
|
masks_averaged = masks_summed / denom.clamp(min=1e-8) |
|
|
|
|
|
|
|
stft_repr = stft_repr * masks_averaged |
|
|
|
|
|
|
|
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels) |
|
|
|
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False, |
|
length=istft_length) |
|
|
|
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', b=batch, s=self.audio_channels, n=num_stems) |
|
|
|
if num_stems == 1: |
|
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t') |
|
|
|
|
|
|
|
if not exists(target): |
|
return recon_audio |
|
|
|
if self.num_stems > 1: |
|
assert target.ndim == 4 and target.shape[1] == self.num_stems |
|
|
|
if target.ndim == 2: |
|
target = rearrange(target, '... t -> ... 1 t') |
|
|
|
target = target[..., :recon_audio.shape[-1]] |
|
|
|
loss = F.l1_loss(recon_audio, target) |
|
|
|
multi_stft_resolution_loss = 0. |
|
|
|
for window_size in self.multi_stft_resolutions_window_sizes: |
|
res_stft_kwargs = dict( |
|
n_fft=max(window_size, self.multi_stft_n_fft), |
|
win_length=window_size, |
|
return_complex=True, |
|
window=self.multi_stft_window_fn(window_size, device=device), |
|
**self.multi_stft_kwargs, |
|
) |
|
|
|
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs) |
|
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs) |
|
|
|
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y) |
|
|
|
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight |
|
|
|
total_loss = loss + weighted_multi_resolution_loss |
|
|
|
if not return_loss_breakdown: |
|
return total_loss |
|
|
|
return total_loss, (loss, multi_stft_resolution_loss) |
|
|