File size: 20,249 Bytes
3978e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
from functools import partial

import torch
from torch import nn, einsum, Tensor
from torch.nn import Module, ModuleList
import torch.nn.functional as F

from models.bs_roformer.attend import Attend
from torch.utils.checkpoint import checkpoint

from beartype.typing import Tuple, Optional, List, Callable
from beartype import beartype

from rotary_embedding_torch import RotaryEmbedding

from einops import rearrange, pack, unpack, reduce, repeat
from einops.layers.torch import Rearrange

from librosa import filters


# helper functions

def exists(val):
    return val is not None


def default(v, d):
    return v if exists(v) else d


def pack_one(t, pattern):
    return pack([t], pattern)


def unpack_one(t, ps, pattern):
    return unpack(t, ps, pattern)[0]


def pad_at_dim(t, pad, dim=-1, value=0.):
    dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
    zeros = ((0, 0) * dims_from_right)
    return F.pad(t, (*zeros, *pad), value=value)


def l2norm(t):
    return F.normalize(t, dim=-1, p=2)


# norm

class RMSNorm(Module):
    def __init__(self, dim):
        super().__init__()
        self.scale = dim ** 0.5
        self.gamma = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        return F.normalize(x, dim=-1) * self.scale * self.gamma


# attention

class FeedForward(Module):
    def __init__(
            self,
            dim,
            mult=4,
            dropout=0.
    ):
        super().__init__()
        dim_inner = int(dim * mult)
        self.net = nn.Sequential(
            RMSNorm(dim),
            nn.Linear(dim, dim_inner),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(dim_inner, dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)


class Attention(Module):
    def __init__(
            self,
            dim,
            heads=8,
            dim_head=64,
            dropout=0.,
            rotary_embed=None,
            flash=True
    ):
        super().__init__()
        self.heads = heads
        self.scale = dim_head ** -0.5
        dim_inner = heads * dim_head

        self.rotary_embed = rotary_embed

        self.attend = Attend(flash=flash, dropout=dropout)

        self.norm = RMSNorm(dim)
        self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False)

        self.to_gates = nn.Linear(dim, heads)

        self.to_out = nn.Sequential(
            nn.Linear(dim_inner, dim, bias=False),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        x = self.norm(x)

        q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)

        if exists(self.rotary_embed):
            q = self.rotary_embed.rotate_queries_or_keys(q)
            k = self.rotary_embed.rotate_queries_or_keys(k)

        out = self.attend(q, k, v)

        gates = self.to_gates(x)
        out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()

        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)


class LinearAttention(Module):
    """
    this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al.
    """

    @beartype
    def __init__(
            self,
            *,
            dim,
            dim_head=32,
            heads=8,
            scale=8,
            flash=False,
            dropout=0.
    ):
        super().__init__()
        dim_inner = dim_head * heads
        self.norm = RMSNorm(dim)

        self.to_qkv = nn.Sequential(
            nn.Linear(dim, dim_inner * 3, bias=False),
            Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
        )

        self.temperature = nn.Parameter(torch.ones(heads, 1, 1))

        self.attend = Attend(
            scale=scale,
            dropout=dropout,
            flash=flash
        )

        self.to_out = nn.Sequential(
            Rearrange('b h d n -> b n (h d)'),
            nn.Linear(dim_inner, dim, bias=False)
        )

    def forward(
            self,
            x
    ):
        x = self.norm(x)

        q, k, v = self.to_qkv(x)

        q, k = map(l2norm, (q, k))
        q = q * self.temperature.exp()

        out = self.attend(q, k, v)

        return self.to_out(out)


class Transformer(Module):
    def __init__(
            self,
            *,
            dim,
            depth,
            dim_head=64,
            heads=8,
            attn_dropout=0.,
            ff_dropout=0.,
            ff_mult=4,
            norm_output=True,
            rotary_embed=None,
            flash_attn=True,
            linear_attn=False
    ):
        super().__init__()
        self.layers = ModuleList([])

        for _ in range(depth):
            if linear_attn:
                attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
            else:
                attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
                                 rotary_embed=rotary_embed, flash=flash_attn)

            self.layers.append(ModuleList([
                attn,
                FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
            ]))

        self.norm = RMSNorm(dim) if norm_output else nn.Identity()

    def forward(self, x):

        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x

        return self.norm(x)


# bandsplit module

class BandSplit(Module):
    @beartype
    def __init__(
            self,
            dim,
            dim_inputs: Tuple[int, ...]
    ):
        super().__init__()
        self.dim_inputs = dim_inputs
        self.to_features = ModuleList([])

        for dim_in in dim_inputs:
            net = nn.Sequential(
                RMSNorm(dim_in),
                nn.Linear(dim_in, dim)
            )

            self.to_features.append(net)

    def forward(self, x):
        x = x.split(self.dim_inputs, dim=-1)

        outs = []
        for split_input, to_feature in zip(x, self.to_features):
            split_output = to_feature(split_input)
            outs.append(split_output)

        return torch.stack(outs, dim=-2)


def MLP(
        dim_in,
        dim_out,
        dim_hidden=None,
        depth=1,
        activation=nn.Tanh
):
    dim_hidden = default(dim_hidden, dim_in)

    net = []
    dims = (dim_in, *((dim_hidden,) * depth), dim_out)

    for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
        is_last = ind == (len(dims) - 2)

        net.append(nn.Linear(layer_dim_in, layer_dim_out))

        if is_last:
            continue

        net.append(activation())

    return nn.Sequential(*net)


class MaskEstimator(Module):
    @beartype
    def __init__(
            self,
            dim,
            dim_inputs: Tuple[int, ...],
            depth,
            mlp_expansion_factor=4
    ):
        super().__init__()
        self.dim_inputs = dim_inputs
        self.to_freqs = ModuleList([])
        dim_hidden = dim * mlp_expansion_factor

        for dim_in in dim_inputs:
            net = []

            mlp = nn.Sequential(
                MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
                nn.GLU(dim=-1)
            )

            self.to_freqs.append(mlp)

    def forward(self, x):
        x = x.unbind(dim=-2)

        outs = []

        for band_features, mlp in zip(x, self.to_freqs):
            freq_out = mlp(band_features)
            outs.append(freq_out)

        return torch.cat(outs, dim=-1)


# main class

class MelBandRoformer(Module):

    @beartype
    def __init__(
            self,
            dim,
            *,
            depth,
            stereo=False,
            num_stems=1,
            time_transformer_depth=2,
            freq_transformer_depth=2,
            linear_transformer_depth=0,
            num_bands=60,
            dim_head=64,
            heads=8,
            attn_dropout=0.1,
            ff_dropout=0.1,
            flash_attn=True,
            dim_freqs_in=1025,
            sample_rate=44100,  # needed for mel filter bank from librosa
            stft_n_fft=2048,
            stft_hop_length=512,
            # 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
            stft_win_length=2048,
            stft_normalized=False,
            stft_window_fn: Optional[Callable] = None,
            mask_estimator_depth=1,
            multi_stft_resolution_loss_weight=1.,
            multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
            multi_stft_hop_size=147,
            multi_stft_normalized=False,
            multi_stft_window_fn: Callable = torch.hann_window,
            match_input_audio_length=False,  # if True, pad output tensor to match length of input tensor
            mlp_expansion_factor=4,
            use_torch_checkpoint=False,
            skip_connection=False,
    ):
        super().__init__()

        self.stereo = stereo
        self.audio_channels = 2 if stereo else 1
        self.num_stems = num_stems
        self.use_torch_checkpoint = use_torch_checkpoint
        self.skip_connection = skip_connection

        self.layers = ModuleList([])

        transformer_kwargs = dict(
            dim=dim,
            heads=heads,
            dim_head=dim_head,
            attn_dropout=attn_dropout,
            ff_dropout=ff_dropout,
            flash_attn=flash_attn
        )

        time_rotary_embed = RotaryEmbedding(dim=dim_head)
        freq_rotary_embed = RotaryEmbedding(dim=dim_head)

        for _ in range(depth):
            tran_modules = []
            if linear_transformer_depth > 0:
                tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs))
            tran_modules.append(
                Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs)
            )
            tran_modules.append(
                Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs)
            )
            self.layers.append(nn.ModuleList(tran_modules))

        self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)

        self.stft_kwargs = dict(
            n_fft=stft_n_fft,
            hop_length=stft_hop_length,
            win_length=stft_win_length,
            normalized=stft_normalized
        )

        freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_n_fft), return_complex=True).shape[1]

        # create mel filter bank
        # with librosa.filters.mel as in section 2 of paper

        mel_filter_bank_numpy = filters.mel(sr=sample_rate, n_fft=stft_n_fft, n_mels=num_bands)

        mel_filter_bank = torch.from_numpy(mel_filter_bank_numpy)

        # for some reason, it doesn't include the first freq? just force a value for now

        mel_filter_bank[0][0] = 1.

        # In some systems/envs we get 0.0 instead of ~1.9e-18 in the last position,
        # so let's force a positive value

        mel_filter_bank[-1, -1] = 1.

        # binary as in paper (then estimated masks are averaged for overlapping regions)

        freqs_per_band = mel_filter_bank > 0
        assert freqs_per_band.any(dim=0).all(), 'all frequencies need to be covered by all bands for now'

        repeated_freq_indices = repeat(torch.arange(freqs), 'f -> b f', b=num_bands)
        freq_indices = repeated_freq_indices[freqs_per_band]

        if stereo:
            freq_indices = repeat(freq_indices, 'f -> f s', s=2)
            freq_indices = freq_indices * 2 + torch.arange(2)
            freq_indices = rearrange(freq_indices, 'f s -> (f s)')

        self.register_buffer('freq_indices', freq_indices, persistent=False)
        self.register_buffer('freqs_per_band', freqs_per_band, persistent=False)

        num_freqs_per_band = reduce(freqs_per_band, 'b f -> b', 'sum')
        num_bands_per_freq = reduce(freqs_per_band, 'b f -> f', 'sum')

        self.register_buffer('num_freqs_per_band', num_freqs_per_band, persistent=False)
        self.register_buffer('num_bands_per_freq', num_bands_per_freq, persistent=False)

        # band split and mask estimator

        freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in num_freqs_per_band.tolist())

        self.band_split = BandSplit(
            dim=dim,
            dim_inputs=freqs_per_bands_with_complex
        )

        self.mask_estimators = nn.ModuleList([])

        for _ in range(num_stems):
            mask_estimator = MaskEstimator(
                dim=dim,
                dim_inputs=freqs_per_bands_with_complex,
                depth=mask_estimator_depth,
                mlp_expansion_factor=mlp_expansion_factor,
            )

            self.mask_estimators.append(mask_estimator)

        # for the multi-resolution stft loss

        self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
        self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
        self.multi_stft_n_fft = stft_n_fft
        self.multi_stft_window_fn = multi_stft_window_fn

        self.multi_stft_kwargs = dict(
            hop_length=multi_stft_hop_size,
            normalized=multi_stft_normalized
        )

        self.match_input_audio_length = match_input_audio_length

    def forward(
            self,
            raw_audio,
            target=None,
            return_loss_breakdown=False
    ):
        """
        einops

        b - batch
        f - freq
        t - time
        s - audio channel (1 for mono, 2 for stereo)
        n - number of 'stems'
        c - complex (2)
        d - feature dimension
        """

        device = raw_audio.device

        if raw_audio.ndim == 2:
            raw_audio = rearrange(raw_audio, 'b t -> b 1 t')

        batch, channels, raw_audio_length = raw_audio.shape

        istft_length = raw_audio_length if self.match_input_audio_length else None

        assert (not self.stereo and channels == 1) or (
                    self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'

        # to stft

        raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')

        stft_window = self.stft_window_fn(device=device)

        stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
        stft_repr = torch.view_as_real(stft_repr)

        stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')

        # merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
        stft_repr = rearrange(stft_repr,'b s f t c -> b (f s) t c')

        # index out all frequencies for all frequency ranges across bands ascending in one go

        batch_arange = torch.arange(batch, device=device)[..., None]

        # account for stereo

        x = stft_repr[batch_arange, self.freq_indices]

        # fold the complex (real and imag) into the frequencies dimension

        x = rearrange(x, 'b f t c -> b t (f c)')

        if self.use_torch_checkpoint:
            x = checkpoint(self.band_split, x, use_reentrant=False)
        else:
            x = self.band_split(x)

        # axial / hierarchical attention

        store = [None] * len(self.layers)
        for i, transformer_block in enumerate(self.layers):

            if len(transformer_block) == 3:
                linear_transformer, time_transformer, freq_transformer = transformer_block

                x, ft_ps = pack([x], 'b * d')
                if self.use_torch_checkpoint:
                    x = checkpoint(linear_transformer, x, use_reentrant=False)
                else:
                    x = linear_transformer(x)
                x, = unpack(x, ft_ps, 'b * d')
            else:
                time_transformer, freq_transformer = transformer_block

            if self.skip_connection:
                # Sum all previous
                for j in range(i):
                    x = x + store[j]

            x = rearrange(x, 'b t f d -> b f t d')
            x, ps = pack([x], '* t d')

            if self.use_torch_checkpoint:
                x = checkpoint(time_transformer, x, use_reentrant=False)
            else:
                x = time_transformer(x)

            x, = unpack(x, ps, '* t d')
            x = rearrange(x, 'b f t d -> b t f d')
            x, ps = pack([x], '* f d')

            if self.use_torch_checkpoint:
                x = checkpoint(freq_transformer, x, use_reentrant=False)
            else:
                x = freq_transformer(x)

            x, = unpack(x, ps, '* f d')

            if self.skip_connection:
                store[i] = x

        num_stems = len(self.mask_estimators)
        if self.use_torch_checkpoint:
            masks = torch.stack([checkpoint(fn, x, use_reentrant=False) for fn in self.mask_estimators], dim=1)
        else:
            masks = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
        masks = rearrange(masks, 'b n t (f c) -> b n f t c', c=2)

        # modulate frequency representation

        stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')

        # complex number multiplication

        stft_repr = torch.view_as_complex(stft_repr)
        masks = torch.view_as_complex(masks)

        masks = masks.type(stft_repr.dtype)

        # need to average the estimated mask for the overlapped frequencies

        scatter_indices = repeat(self.freq_indices, 'f -> b n f t', b=batch, n=num_stems, t=stft_repr.shape[-1])

        stft_repr_expanded_stems = repeat(stft_repr, 'b 1 ... -> b n ...', n=num_stems)
        masks_summed = torch.zeros_like(stft_repr_expanded_stems).scatter_add_(2, scatter_indices, masks)

        denom = repeat(self.num_bands_per_freq, 'f -> (f r) 1', r=channels)

        masks_averaged = masks_summed / denom.clamp(min=1e-8)

        # modulate stft repr with estimated mask

        stft_repr = stft_repr * masks_averaged

        # istft

        stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)

        recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False,
                                  length=istft_length)

        recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', b=batch, s=self.audio_channels, n=num_stems)

        if num_stems == 1:
            recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')

        # if a target is passed in, calculate loss for learning

        if not exists(target):
            return recon_audio

        if self.num_stems > 1:
            assert target.ndim == 4 and target.shape[1] == self.num_stems

        if target.ndim == 2:
            target = rearrange(target, '... t -> ... 1 t')

        target = target[..., :recon_audio.shape[-1]]  # protect against lost length on istft

        loss = F.l1_loss(recon_audio, target)

        multi_stft_resolution_loss = 0.

        for window_size in self.multi_stft_resolutions_window_sizes:
            res_stft_kwargs = dict(
                n_fft=max(window_size, self.multi_stft_n_fft),  # not sure what n_fft is across multi resolution stft
                win_length=window_size,
                return_complex=True,
                window=self.multi_stft_window_fn(window_size, device=device),
                **self.multi_stft_kwargs,
            )

            recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
            target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)

            multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)

        weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight

        total_loss = loss + weighted_multi_resolution_loss

        if not return_loss_breakdown:
            return total_loss

        return total_loss, (loss, multi_stft_resolution_loss)