Spaces:
Running
Running
| # modules/text_analysis/semantic_analysis.py | |
| # [Mantener todas las importaciones y constantes existentes...] | |
| import streamlit as st | |
| import spacy | |
| import networkx as nx | |
| import matplotlib.pyplot as plt | |
| import io | |
| import base64 | |
| from collections import Counter, defaultdict | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| from .stopwords import ( | |
| process_text, | |
| get_custom_stopwords, | |
| get_stopwords_for_spacy | |
| ) | |
| # Define colors for grammatical categories | |
| POS_COLORS = { | |
| 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', | |
| 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', | |
| 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', | |
| 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', | |
| } | |
| POS_TRANSLATIONS = { | |
| 'es': { | |
| 'ADJ': 'Adjetivo', 'ADP': 'Preposici贸n', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', | |
| 'CCONJ': 'Conjunci贸n Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjecci贸n', | |
| 'NOUN': 'Sustantivo', 'NUM': 'N煤mero', 'PART': 'Part铆cula', 'PRON': 'Pronombre', | |
| 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunci贸n Subordinante', 'SYM': 'S铆mbolo', | |
| 'VERB': 'Verbo', 'X': 'Otro', | |
| }, | |
| 'en': { | |
| 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', | |
| 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', | |
| 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', | |
| 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', | |
| 'VERB': 'Verb', 'X': 'Other', | |
| }, | |
| 'fr': { | |
| 'ADJ': 'Adjectif', 'ADP': 'Pr茅position', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', | |
| 'CCONJ': 'Conjonction de Coordination', 'DET': 'D茅terminant', 'INTJ': 'Interjection', | |
| 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', | |
| 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', | |
| 'VERB': 'Verbe', 'X': 'Autre', | |
| } | |
| } | |
| ENTITY_LABELS = { | |
| 'es': { | |
| "Personas": "lightblue", | |
| "Lugares": "lightcoral", | |
| "Inventos": "lightgreen", | |
| "Fechas": "lightyellow", | |
| "Conceptos": "lightpink" | |
| }, | |
| 'en': { | |
| "People": "lightblue", | |
| "Places": "lightcoral", | |
| "Inventions": "lightgreen", | |
| "Dates": "lightyellow", | |
| "Concepts": "lightpink" | |
| }, | |
| 'fr': { | |
| "Personnes": "lightblue", | |
| "Lieux": "lightcoral", | |
| "Inventions": "lightgreen", | |
| "Dates": "lightyellow", | |
| "Concepts": "lightpink" | |
| } | |
| } | |
| def perform_semantic_analysis(text, nlp, lang_code): | |
| """ | |
| Realiza el an谩lisis sem谩ntico completo del texto. | |
| Args: | |
| text: Texto a analizar | |
| nlp: Modelo de spaCy | |
| lang_code: C贸digo del idioma | |
| Returns: | |
| dict: Resultados del an谩lisis | |
| """ | |
| try: | |
| logger.info(f"Starting semantic analysis for language: {lang_code}") | |
| # Procesar texto y remover stopwords | |
| doc = nlp(text) | |
| tokens = process_text(text, lang_code, nlp) | |
| # Identificar conceptos clave | |
| key_concepts = identify_key_concepts(doc, stopwords=get_custom_stopwords(lang_code)) | |
| # Crear y visualizar grafo de conceptos | |
| concept_graph = create_concept_graph(doc, key_concepts) | |
| concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) | |
| # Convertir figura a bytes | |
| concept_graph_bytes = fig_to_bytes(concept_graph_fig) | |
| logger.info("Semantic analysis completed successfully") | |
| return { | |
| 'success': True, | |
| 'key_concepts': key_concepts, | |
| 'concept_graph': concept_graph_bytes, | |
| } | |
| except Exception as e: | |
| logger.error(f"Error in perform_semantic_analysis: {str(e)}") | |
| return { | |
| 'success': False, | |
| 'error': str(e) | |
| } | |
| def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3): | |
| """ | |
| Identifica conceptos clave en el texto. | |
| """ | |
| try: | |
| word_freq = Counter() | |
| for token in doc: | |
| if (token.lemma_.lower() not in stopwords and | |
| len(token.lemma_) >= min_length and | |
| token.is_alpha and | |
| not token.is_punct and | |
| not token.like_num): | |
| word_freq[token.lemma_.lower()] += 1 | |
| concepts = [(word, freq) for word, freq in word_freq.items() | |
| if freq >= min_freq] | |
| concepts.sort(key=lambda x: x[1], reverse=True) | |
| logger.info(f"Identified {len(concepts)} key concepts") | |
| return concepts[:10] | |
| except Exception as e: | |
| logger.error(f"Error en identify_key_concepts: {str(e)}") | |
| return [] | |
| def fig_to_bytes(fig): | |
| buf = io.BytesIO() | |
| fig.savefig(buf, format='png') | |
| buf.seek(0) | |
| return buf.getvalue() | |
| def fig_to_html(fig): | |
| buf = io.BytesIO() | |
| fig.savefig(buf, format='png') | |
| buf.seek(0) | |
| img_str = base64.b64encode(buf.getvalue()).decode() | |
| return f'<img src="data:image/png;base64,{img_str}" />' | |
| def create_concept_graph(doc, key_concepts): | |
| """ | |
| Crea un grafo de relaciones entre conceptos. | |
| Args: | |
| doc: Documento procesado por spaCy | |
| key_concepts: Lista de tuplas (concepto, frecuencia) | |
| Returns: | |
| nx.Graph: Grafo de conceptos | |
| """ | |
| try: | |
| G = nx.Graph() | |
| # Crear un conjunto de conceptos clave para b煤squeda r谩pida | |
| concept_words = {concept[0].lower() for concept in key_concepts} | |
| # A帽adir nodos al grafo | |
| for concept, freq in key_concepts: | |
| G.add_node(concept.lower(), weight=freq) | |
| # Analizar cada oraci贸n | |
| for sent in doc.sents: | |
| # Obtener conceptos en la oraci贸n actual | |
| current_concepts = [] | |
| for token in sent: | |
| if token.lemma_.lower() in concept_words: | |
| current_concepts.append(token.lemma_.lower()) | |
| # Crear conexiones entre conceptos en la misma oraci贸n | |
| for i, concept1 in enumerate(current_concepts): | |
| for concept2 in current_concepts[i+1:]: | |
| if concept1 != concept2: | |
| # Si ya existe la arista, incrementar el peso | |
| if G.has_edge(concept1, concept2): | |
| G[concept1][concept2]['weight'] += 1 | |
| # Si no existe, crear nueva arista con peso 1 | |
| else: | |
| G.add_edge(concept1, concept2, weight=1) | |
| return G | |
| except Exception as e: | |
| logger.error(f"Error en create_concept_graph: {str(e)}") | |
| # Retornar un grafo vac铆o en caso de error | |
| return nx.Graph() | |
| def visualize_concept_graph(G, lang_code): | |
| """ | |
| Visualiza el grafo de conceptos. | |
| Args: | |
| G: Grafo de networkx | |
| lang_code: C贸digo del idioma | |
| Returns: | |
| matplotlib.figure.Figure: Figura con el grafo visualizado | |
| """ | |
| try: | |
| plt.figure(figsize=(12, 8)) | |
| # Calcular el layout del grafo | |
| pos = nx.spring_layout(G) | |
| # Obtener pesos de nodos y aristas | |
| node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()] | |
| edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()] | |
| # Dibujar el grafo | |
| nx.draw_networkx_nodes(G, pos, | |
| node_size=node_weights, | |
| node_color='lightblue', | |
| alpha=0.6) | |
| nx.draw_networkx_edges(G, pos, | |
| width=edge_weights, | |
| alpha=0.5, | |
| edge_color='gray') | |
| nx.draw_networkx_labels(G, pos, | |
| font_size=10, | |
| font_weight='bold') | |
| plt.title("Red de conceptos relacionados") | |
| plt.axis('off') | |
| return plt.gcf() | |
| except Exception as e: | |
| logger.error(f"Error en visualize_concept_graph: {str(e)}") | |
| # Retornar una figura vac铆a en caso de error | |
| return plt.figure() | |
| def create_entity_graph(entities): | |
| G = nx.Graph() | |
| for entity_type, entity_list in entities.items(): | |
| for entity in entity_list: | |
| G.add_node(entity, type=entity_type) | |
| for i, entity1 in enumerate(entity_list): | |
| for entity2 in entity_list[i+1:]: | |
| G.add_edge(entity1, entity2) | |
| return G | |
| def visualize_entity_graph(G, lang_code): | |
| fig, ax = plt.subplots(figsize=(12, 8)) | |
| pos = nx.spring_layout(G) | |
| for entity_type, color in ENTITY_LABELS[lang_code].items(): | |
| node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] | |
| nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) | |
| nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) | |
| nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) | |
| ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) | |
| ax.axis('off') | |
| plt.tight_layout() | |
| return fig | |
| ################################################################################# | |
| def create_topic_graph(topics, doc): | |
| G = nx.Graph() | |
| for topic in topics: | |
| G.add_node(topic, weight=doc.text.count(topic)) | |
| for i, topic1 in enumerate(topics): | |
| for topic2 in topics[i+1:]: | |
| weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) | |
| if weight > 0: | |
| G.add_edge(topic1, topic2, weight=weight) | |
| return G | |
| def visualize_topic_graph(G, lang_code): | |
| fig, ax = plt.subplots(figsize=(12, 8)) | |
| pos = nx.spring_layout(G) | |
| node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] | |
| nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) | |
| nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) | |
| edge_weights = [G[u][v]['weight'] for u, v in G.edges()] | |
| nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) | |
| ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) | |
| ax.axis('off') | |
| plt.tight_layout() | |
| return fig | |
| ########################################################################################### | |
| def generate_summary(doc, lang_code): | |
| sentences = list(doc.sents) | |
| summary = sentences[:3] # Toma las primeras 3 oraciones como resumen | |
| return " ".join([sent.text for sent in summary]) | |
| def extract_entities(doc, lang_code): | |
| entities = defaultdict(list) | |
| for ent in doc.ents: | |
| if ent.label_ in ENTITY_LABELS[lang_code]: | |
| entities[ent.label_].append(ent.text) | |
| return dict(entities) | |
| def analyze_sentiment(doc, lang_code): | |
| positive_words = sum(1 for token in doc if token.sentiment > 0) | |
| negative_words = sum(1 for token in doc if token.sentiment < 0) | |
| total_words = len(doc) | |
| if positive_words > negative_words: | |
| return "Positivo" | |
| elif negative_words > positive_words: | |
| return "Negativo" | |
| else: | |
| return "Neutral" | |
| def extract_topics(doc, lang_code): | |
| vectorizer = TfidfVectorizer(stop_words='english', max_features=5) | |
| tfidf_matrix = vectorizer.fit_transform([doc.text]) | |
| feature_names = vectorizer.get_feature_names_out() | |
| return list(feature_names) | |
| # Aseg煤rate de que todas las funciones necesarias est茅n exportadas | |
| __all__ = [ | |
| 'perform_semantic_analysis', | |
| 'identify_key_concepts', | |
| 'create_concept_graph', | |
| 'visualize_concept_graph', | |
| 'create_entity_graph', | |
| 'visualize_entity_graph', | |
| 'generate_summary', | |
| 'extract_entities', | |
| 'analyze_sentiment', | |
| 'create_topic_graph', | |
| 'visualize_topic_graph', | |
| 'extract_topics', | |
| 'ENTITY_LABELS', | |
| 'POS_COLORS', | |
| 'POS_TRANSLATIONS' | |
| ] |