Spaces:
Running
Running
Update modules/text_analysis/semantic_analysis.py
Browse files
modules/text_analysis/semantic_analysis.py
CHANGED
|
@@ -87,60 +87,41 @@ def perform_semantic_analysis(text, nlp, lang_code):
|
|
| 87 |
Returns:
|
| 88 |
dict: Resultados del análisis
|
| 89 |
"""
|
| 90 |
-
|
| 91 |
-
logger.info(f"Starting semantic analysis for language: {lang_code}")
|
| 92 |
try:
|
| 93 |
-
|
|
|
|
|
|
|
| 94 |
doc = nlp(text)
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
concept_graph = create_concept_graph(doc, key_concepts)
|
| 97 |
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
|
| 98 |
|
| 99 |
-
# Convertir
|
| 100 |
concept_graph_bytes = fig_to_bytes(concept_graph_fig)
|
| 101 |
|
| 102 |
-
|
| 103 |
logger.info("Semantic analysis completed successfully")
|
| 104 |
return {
|
|
|
|
| 105 |
'key_concepts': key_concepts,
|
| 106 |
'concept_graph': concept_graph_bytes,
|
| 107 |
}
|
| 108 |
except Exception as e:
|
| 109 |
logger.error(f"Error in perform_semantic_analysis: {str(e)}")
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
buf = io.BytesIO()
|
| 115 |
-
fig.savefig(buf, format='png')
|
| 116 |
-
buf.seek(0)
|
| 117 |
-
return buf.getvalue()
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
def fig_to_html(fig):
|
| 121 |
-
buf = io.BytesIO()
|
| 122 |
-
fig.savefig(buf, format='png')
|
| 123 |
-
buf.seek(0)
|
| 124 |
-
img_str = base64.b64encode(buf.getvalue()).decode()
|
| 125 |
-
return f'<img src="data:image/png;base64,{img_str}" />'
|
| 126 |
-
|
| 127 |
-
|
| 128 |
|
| 129 |
-
def identify_key_concepts(doc, min_freq=2, min_length=3):
|
| 130 |
"""
|
| 131 |
Identifica conceptos clave en el texto.
|
| 132 |
-
Args:
|
| 133 |
-
doc: Documento procesado por spaCy
|
| 134 |
-
min_freq: Frecuencia mínima para considerar un concepto
|
| 135 |
-
min_length: Longitud mínima de palabra para considerar
|
| 136 |
-
Returns:
|
| 137 |
-
list: Lista de tuplas (concepto, frecuencia)
|
| 138 |
"""
|
| 139 |
try:
|
| 140 |
-
# Obtener stopwords para el idioma
|
| 141 |
-
stopwords = get_stopwords(doc.lang_)
|
| 142 |
-
|
| 143 |
-
# Contar frecuencias de palabras
|
| 144 |
word_freq = Counter()
|
| 145 |
|
| 146 |
for token in doc:
|
|
@@ -152,19 +133,30 @@ def identify_key_concepts(doc, min_freq=2, min_length=3):
|
|
| 152 |
|
| 153 |
word_freq[token.lemma_.lower()] += 1
|
| 154 |
|
| 155 |
-
# Filtrar por frecuencia mínima
|
| 156 |
concepts = [(word, freq) for word, freq in word_freq.items()
|
| 157 |
if freq >= min_freq]
|
| 158 |
-
|
| 159 |
-
# Ordenar por frecuencia
|
| 160 |
concepts.sort(key=lambda x: x[1], reverse=True)
|
| 161 |
|
| 162 |
-
|
|
|
|
| 163 |
|
| 164 |
except Exception as e:
|
| 165 |
logger.error(f"Error en identify_key_concepts: {str(e)}")
|
| 166 |
-
return []
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
def create_concept_graph(doc, key_concepts):
|
| 170 |
"""
|
|
|
|
| 87 |
Returns:
|
| 88 |
dict: Resultados del análisis
|
| 89 |
"""
|
|
|
|
|
|
|
| 90 |
try:
|
| 91 |
+
logger.info(f"Starting semantic analysis for language: {lang_code}")
|
| 92 |
+
|
| 93 |
+
# Procesar texto y remover stopwords
|
| 94 |
doc = nlp(text)
|
| 95 |
+
tokens = process_text(text, lang_code, nlp)
|
| 96 |
+
|
| 97 |
+
# Identificar conceptos clave
|
| 98 |
+
key_concepts = identify_key_concepts(doc, stopwords=get_custom_stopwords(lang_code))
|
| 99 |
+
|
| 100 |
+
# Crear y visualizar grafo de conceptos
|
| 101 |
concept_graph = create_concept_graph(doc, key_concepts)
|
| 102 |
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code)
|
| 103 |
|
| 104 |
+
# Convertir figura a bytes
|
| 105 |
concept_graph_bytes = fig_to_bytes(concept_graph_fig)
|
| 106 |
|
|
|
|
| 107 |
logger.info("Semantic analysis completed successfully")
|
| 108 |
return {
|
| 109 |
+
'success': True,
|
| 110 |
'key_concepts': key_concepts,
|
| 111 |
'concept_graph': concept_graph_bytes,
|
| 112 |
}
|
| 113 |
except Exception as e:
|
| 114 |
logger.error(f"Error in perform_semantic_analysis: {str(e)}")
|
| 115 |
+
return {
|
| 116 |
+
'success': False,
|
| 117 |
+
'error': str(e)
|
| 118 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3):
|
| 121 |
"""
|
| 122 |
Identifica conceptos clave en el texto.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
"""
|
| 124 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
word_freq = Counter()
|
| 126 |
|
| 127 |
for token in doc:
|
|
|
|
| 133 |
|
| 134 |
word_freq[token.lemma_.lower()] += 1
|
| 135 |
|
|
|
|
| 136 |
concepts = [(word, freq) for word, freq in word_freq.items()
|
| 137 |
if freq >= min_freq]
|
|
|
|
|
|
|
| 138 |
concepts.sort(key=lambda x: x[1], reverse=True)
|
| 139 |
|
| 140 |
+
logger.info(f"Identified {len(concepts)} key concepts")
|
| 141 |
+
return concepts[:10]
|
| 142 |
|
| 143 |
except Exception as e:
|
| 144 |
logger.error(f"Error en identify_key_concepts: {str(e)}")
|
| 145 |
+
return []
|
| 146 |
|
| 147 |
+
def fig_to_bytes(fig):
|
| 148 |
+
buf = io.BytesIO()
|
| 149 |
+
fig.savefig(buf, format='png')
|
| 150 |
+
buf.seek(0)
|
| 151 |
+
return buf.getvalue()
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def fig_to_html(fig):
|
| 155 |
+
buf = io.BytesIO()
|
| 156 |
+
fig.savefig(buf, format='png')
|
| 157 |
+
buf.seek(0)
|
| 158 |
+
img_str = base64.b64encode(buf.getvalue()).decode()
|
| 159 |
+
return f'<img src="data:image/png;base64,{img_str}" />'
|
| 160 |
|
| 161 |
def create_concept_graph(doc, key_concepts):
|
| 162 |
"""
|