v4 / modules /semantic /semantic_interface.py
AIdeaText's picture
Update modules/semantic/semantic_interface.py
46f94ad verified
raw
history blame
6.85 kB
#modules/semantic/semantic_interface.py
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import spacy_streamlit
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import pandas as pd
import re
import logging
# Configuración del logger
logger = logging.getLogger(__name__)
# Importaciones locales
from .semantic_process import (
process_semantic_input,
format_semantic_results
)
from ..utils.widget_utils import generate_unique_key
from ..database.semantic_mongo_db import store_student_semantic_result
from ..database.semantic_export import export_user_interactions
def display_semantic_interface(lang_code, nlp_models, semantic_t):
"""
Interfaz para el análisis semántico
Args:
lang_code: Código del idioma actual
nlp_models: Modelos de spaCy cargados
semantic_t: Diccionario de traducciones semánticas
"""
try:
# Inicializar el estado si no existe
if 'semantic_analysis_counter' not in st.session_state:
st.session_state.semantic_analysis_counter = 0
# Opción para cargar archivo con key única
uploaded_file = st.file_uploader(
semantic_t.get('file_uploader', 'Upload a text file for analysis'),
type=['txt'],
key=f"semantic_file_uploader_{st.session_state.semantic_analysis_counter}"
)
# Botón de análisis con key única
col1, col2, col3 = st.columns([2,1,2])
with col2:
analyze_button = st.button(
semantic_t.get('analyze_button', 'Analyze text'),
key=f"semantic_analyze_button_{st.session_state.semantic_analysis_counter}",
use_container_width=True
)
if analyze_button and uploaded_file is not None:
try:
with st.spinner(semantic_t.get('processing', 'Processing...')):
text_content = uploaded_file.getvalue().decode('utf-8')
analysis_result = process_semantic_input(
text_content,
lang_code,
nlp_models,
semantic_t
)
if analysis_result['success']:
st.session_state.semantic_result = analysis_result
st.session_state.semantic_analysis_counter += 1
# Guardar en la base de datos
if store_student_semantic_result(
st.session_state.username,
text_content,
analysis_result['analysis']
):
st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
# Mostrar resultados
display_semantic_results(
analysis_result,
lang_code,
semantic_t
)
else:
st.error(semantic_t.get('error_message', 'Error saving analysis'))
else:
st.error(analysis_result['message'])
except Exception as e:
logger.error(f"Error en análisis semántico: {str(e)}")
st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
elif analyze_button:
st.warning(semantic_t.get('warning_message', 'Please upload a file first'))
# Mostrar resultados previos
elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
display_semantic_results(
st.session_state.semantic_result,
lang_code,
semantic_t
)
else:
st.info(semantic_t.get('initial_message', 'Upload a file to begin analysis'))
except Exception as e:
logger.error(f"Error general en interfaz semántica: {str(e)}")
st.error("Se produjo un error. Por favor, intente de nuevo.")
def display_semantic_results(result, lang_code, semantic_t):
"""
Muestra los resultados del análisis semántico en tabs
"""
if result is None or not result['success']:
st.warning(semantic_t.get('no_results', 'No results available'))
return
analysis = result['analysis']
# Crear tabs para los resultados
tab1, tab2 = st.tabs([
semantic_t.get('concepts_tab', 'Key Concepts Analysis'),
semantic_t.get('entities_tab', 'Entities Analysis')
])
# Tab 1: Conceptos Clave
with tab1:
col1, col2 = st.columns(2)
# Columna 1: Lista de conceptos
with col1:
st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
concept_text = "\n".join([
f"• {concept} ({frequency:.2f})"
for concept, frequency in analysis['key_concepts']
])
st.markdown(concept_text)
# Columna 2: Gráfico de conceptos
with col2:
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
st.image(analysis['concept_graph'])
# Tab 2: Entidades
with tab2:
col1, col2 = st.columns(2)
# Columna 1: Lista de entidades
with col1:
st.subheader(semantic_t.get('identified_entities', 'Identified Entities'))
if 'entities' in analysis:
for entity_type, entities in analysis['entities'].items():
st.markdown(f"**{entity_type}**")
st.markdown("• " + "\n• ".join(entities))
# Columna 2: Gráfico de entidades
with col2:
st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
st.image(analysis['entity_graph'])
# Botón de exportación al final
col1, col2, col3 = st.columns([2,1,2])
with col2:
if st.button(
semantic_t.get('export_button', 'Export Analysis'),
key=f"semantic_export_{st.session_state.semantic_analysis_counter}",
use_container_width=True
):
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
st.download_button(
label=semantic_t.get('download_pdf', 'Download PDF'),
data=pdf_buffer,
file_name="semantic_analysis.pdf",
mime="application/pdf",
key=f"semantic_download_{st.session_state.semantic_analysis_counter}"
)