File size: 6,849 Bytes
c7330d5
 
 
 
 
d4a5717
c7330d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19de296
c7330d5
3f98e79
 
7c29197
46f94ad
 
 
 
3f98e79
fa70157
46f94ad
 
 
fa70157
46f94ad
 
 
 
 
 
fa70157
46f94ad
 
 
 
 
 
 
5007d0e
fa70157
5007d0e
 
 
 
 
 
 
 
 
 
 
 
 
46f94ad
 
fa70157
46f94ad
5007d0e
 
 
 
 
 
46f94ad
5007d0e
 
 
 
 
fa70157
5007d0e
 
 
 
 
 
 
 
fa70157
 
46f94ad
fa70157
46f94ad
fa70157
 
7c29197
fa70157
5007d0e
7c29197
fa70157
 
 
3f98e79
7e3e643
 
5007d0e
7e3e643
 
 
 
 
 
 
5007d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa70157
5007d0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#modules/semantic/semantic_interface.py
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import spacy_streamlit
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import pandas as pd
import re
import logging

# Configuración del logger
logger = logging.getLogger(__name__)

# Importaciones locales
from .semantic_process import (
    process_semantic_input,
    format_semantic_results
)

from ..utils.widget_utils import generate_unique_key
from ..database.semantic_mongo_db import store_student_semantic_result
from ..database.semantic_export import export_user_interactions

def display_semantic_interface(lang_code, nlp_models, semantic_t):
    """
    Interfaz para el análisis semántico
    Args:
        lang_code: Código del idioma actual
        nlp_models: Modelos de spaCy cargados
        semantic_t: Diccionario de traducciones semánticas
    """
    try:
        # Inicializar el estado si no existe
        if 'semantic_analysis_counter' not in st.session_state:
            st.session_state.semantic_analysis_counter = 0

        # Opción para cargar archivo con key única
        uploaded_file = st.file_uploader(
            semantic_t.get('file_uploader', 'Upload a text file for analysis'),
            type=['txt'],
            key=f"semantic_file_uploader_{st.session_state.semantic_analysis_counter}"
        )

        # Botón de análisis con key única
        col1, col2, col3 = st.columns([2,1,2])
        with col2:
            analyze_button = st.button(
                semantic_t.get('analyze_button', 'Analyze text'),
                key=f"semantic_analyze_button_{st.session_state.semantic_analysis_counter}",
                use_container_width=True
            )

        if analyze_button and uploaded_file is not None:
            try:
                with st.spinner(semantic_t.get('processing', 'Processing...')):
                    text_content = uploaded_file.getvalue().decode('utf-8')
                    
                    analysis_result = process_semantic_input(
                        text_content, 
                        lang_code,
                        nlp_models,
                        semantic_t
                    )
                    
                    if analysis_result['success']:
                        st.session_state.semantic_result = analysis_result
                        st.session_state.semantic_analysis_counter += 1
                        
                        # Guardar en la base de datos
                        if store_student_semantic_result(
                            st.session_state.username,
                            text_content,
                            analysis_result['analysis']
                        ):
                            st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
                            # Mostrar resultados
                            display_semantic_results(
                                analysis_result,
                                lang_code,
                                semantic_t
                            )
                        else:
                            st.error(semantic_t.get('error_message', 'Error saving analysis'))
                    else:
                        st.error(analysis_result['message'])
            except Exception as e:
                logger.error(f"Error en análisis semántico: {str(e)}")
                st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
        elif analyze_button:
            st.warning(semantic_t.get('warning_message', 'Please upload a file first'))
        
        # Mostrar resultados previos
        elif 'semantic_result' in st.session_state and st.session_state.semantic_result is not None:
            display_semantic_results(
                st.session_state.semantic_result,
                lang_code,
                semantic_t
            )
        else:
            st.info(semantic_t.get('initial_message', 'Upload a file to begin analysis'))

    except Exception as e:
        logger.error(f"Error general en interfaz semántica: {str(e)}")
        st.error("Se produjo un error. Por favor, intente de nuevo.")

def display_semantic_results(result, lang_code, semantic_t):
    """
    Muestra los resultados del análisis semántico en tabs
    """
    if result is None or not result['success']:
        st.warning(semantic_t.get('no_results', 'No results available'))
        return

    analysis = result['analysis']
    
    # Crear tabs para los resultados
    tab1, tab2 = st.tabs([
        semantic_t.get('concepts_tab', 'Key Concepts Analysis'),
        semantic_t.get('entities_tab', 'Entities Analysis')
    ])
    
    # Tab 1: Conceptos Clave
    with tab1:
        col1, col2 = st.columns(2)
        
        # Columna 1: Lista de conceptos
        with col1:
            st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
            concept_text = "\n".join([
                f"• {concept} ({frequency:.2f})" 
                for concept, frequency in analysis['key_concepts']
            ])
            st.markdown(concept_text)
        
        # Columna 2: Gráfico de conceptos
        with col2:
            st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
            st.image(analysis['concept_graph'])
    
    # Tab 2: Entidades
    with tab2:
        col1, col2 = st.columns(2)
        
        # Columna 1: Lista de entidades
        with col1:
            st.subheader(semantic_t.get('identified_entities', 'Identified Entities'))
            if 'entities' in analysis:
                for entity_type, entities in analysis['entities'].items():
                    st.markdown(f"**{entity_type}**")
                    st.markdown("• " + "\n• ".join(entities))
        
        # Columna 2: Gráfico de entidades
        with col2:
            st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
            st.image(analysis['entity_graph'])

    # Botón de exportación al final
    col1, col2, col3 = st.columns([2,1,2])
    with col2:
        if st.button(
            semantic_t.get('export_button', 'Export Analysis'), 
            key=f"semantic_export_{st.session_state.semantic_analysis_counter}",
            use_container_width=True
        ):
            pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
            st.download_button(
                label=semantic_t.get('download_pdf', 'Download PDF'),
                data=pdf_buffer,
                file_name="semantic_analysis.pdf",
                mime="application/pdf",
                key=f"semantic_download_{st.session_state.semantic_analysis_counter}"
            )