Spaces:
Running
Running
| # modules/text_analysis/semantic_analysis.py | |
| # 1. Importaciones estándar del sistema | |
| import logging | |
| import io | |
| import base64 | |
| from collections import Counter, defaultdict | |
| # 2. Importaciones de terceros | |
| import streamlit as st | |
| import spacy | |
| import networkx as nx | |
| import matplotlib.pyplot as plt | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| # Solo configurar si no hay handlers ya configurados | |
| logger = logging.getLogger(__name__) | |
| # 4. Importaciones locales | |
| from .stopwords import ( | |
| process_text, | |
| clean_text, | |
| get_custom_stopwords, | |
| get_stopwords_for_spacy | |
| ) | |
| # Define colors for grammatical categories | |
| POS_COLORS = { | |
| 'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', | |
| 'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', | |
| 'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', | |
| 'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', | |
| } | |
| POS_TRANSLATIONS = { | |
| 'es': { | |
| 'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', | |
| 'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', | |
| 'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', | |
| 'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', | |
| 'VERB': 'Verbo', 'X': 'Otro', | |
| }, | |
| 'en': { | |
| 'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', | |
| 'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', | |
| 'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', | |
| 'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', | |
| 'VERB': 'Verb', 'X': 'Other', | |
| }, | |
| 'fr': { | |
| 'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', | |
| 'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', | |
| 'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', | |
| 'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', | |
| 'VERB': 'Verbe', 'X': 'Autre', | |
| } | |
| } | |
| ENTITY_LABELS = { | |
| 'es': { | |
| "Personas": "lightblue", | |
| "Lugares": "lightcoral", | |
| "Inventos": "lightgreen", | |
| "Fechas": "lightyellow", | |
| "Conceptos": "lightpink" | |
| }, | |
| 'en': { | |
| "People": "lightblue", | |
| "Places": "lightcoral", | |
| "Inventions": "lightgreen", | |
| "Dates": "lightyellow", | |
| "Concepts": "lightpink" | |
| }, | |
| 'fr': { | |
| "Personnes": "lightblue", | |
| "Lieux": "lightcoral", | |
| "Inventions": "lightgreen", | |
| "Dates": "lightyellow", | |
| "Concepts": "lightpink" | |
| } | |
| } | |
| def fig_to_bytes(fig): | |
| """Convierte una figura de matplotlib a bytes.""" | |
| try: | |
| buf = io.BytesIO() | |
| fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') | |
| buf.seek(0) | |
| return buf.getvalue() | |
| except Exception as e: | |
| logger.error(f"Error en fig_to_bytes: {str(e)}") | |
| return None | |
| ########################################################### | |
| def perform_semantic_analysis(text, nlp, lang_code): | |
| """ | |
| Realiza el análisis semántico completo del texto. | |
| """ | |
| if not text or not nlp or not lang_code: | |
| logger.error("Parámetros inválidos para el análisis semántico") | |
| return { | |
| 'success': False, | |
| 'error': 'Parámetros inválidos' | |
| } | |
| try: | |
| logger.info(f"Starting semantic analysis for language: {lang_code}") | |
| # Procesar texto y remover stopwords | |
| doc = nlp(text) | |
| if not doc: | |
| logger.error("Error al procesar el texto con spaCy") | |
| return { | |
| 'success': False, | |
| 'error': 'Error al procesar el texto' | |
| } | |
| # Identificar conceptos clave | |
| logger.info("Identificando conceptos clave...") | |
| stopwords = get_custom_stopwords(lang_code) | |
| key_concepts = identify_key_concepts(doc, stopwords=stopwords) | |
| if not key_concepts: | |
| logger.warning("No se identificaron conceptos clave") | |
| return { | |
| 'success': False, | |
| 'error': 'No se pudieron identificar conceptos clave' | |
| } | |
| # Crear grafo de conceptos | |
| logger.info(f"Creando grafo de conceptos con {len(key_concepts)} conceptos...") | |
| concept_graph = create_concept_graph(doc, key_concepts) | |
| if not concept_graph.nodes(): | |
| logger.warning("Se creó un grafo vacío") | |
| return { | |
| 'success': False, | |
| 'error': 'No se pudo crear el grafo de conceptos' | |
| } | |
| # Visualizar grafo | |
| logger.info("Visualizando grafo...") | |
| plt.clf() # Limpiar figura actual | |
| concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) | |
| # Convertir a bytes | |
| logger.info("Convirtiendo grafo a bytes...") | |
| graph_bytes = fig_to_bytes(concept_graph_fig) | |
| if not graph_bytes: | |
| logger.error("Error al convertir grafo a bytes") | |
| return { | |
| 'success': False, | |
| 'error': 'Error al generar visualización' | |
| } | |
| # Limpiar recursos | |
| plt.close(concept_graph_fig) | |
| plt.close('all') | |
| result = { | |
| 'success': True, | |
| 'key_concepts': key_concepts, | |
| 'concept_graph': graph_bytes | |
| } | |
| logger.info("Análisis semántico completado exitosamente") | |
| return result | |
| except Exception as e: | |
| logger.error(f"Error in perform_semantic_analysis: {str(e)}") | |
| plt.close('all') # Asegurarse de limpiar recursos | |
| return { | |
| 'success': False, | |
| 'error': str(e) | |
| } | |
| finally: | |
| plt.close('all') # Asegurar limpieza incluso si hay error | |
| ############################################################ | |
| def identify_key_concepts(doc, stopwords, min_freq=2, min_length=3): | |
| """ | |
| Identifica conceptos clave en el texto, excluyendo entidades nombradas. | |
| Args: | |
| doc: Documento procesado por spaCy | |
| stopwords: Lista de stopwords | |
| min_freq: Frecuencia mínima para considerar un concepto | |
| min_length: Longitud mínima del concepto | |
| Returns: | |
| List[Tuple[str, int]]: Lista de tuplas (concepto, frecuencia) | |
| """ | |
| try: | |
| word_freq = Counter() | |
| # Crear conjunto de tokens que son parte de entidades | |
| entity_tokens = set() | |
| for ent in doc.ents: | |
| entity_tokens.update(token.i for token in ent) | |
| # Procesar tokens | |
| for token in doc: | |
| # Verificar si el token no es parte de una entidad nombrada | |
| if (token.i not in entity_tokens and # No es parte de una entidad | |
| token.lemma_.lower() not in stopwords and # No es stopword | |
| len(token.lemma_) >= min_length and # Longitud mínima | |
| token.is_alpha and # Es alfabético | |
| not token.is_punct and # No es puntuación | |
| not token.like_num and # No es número | |
| not token.is_space and # No es espacio | |
| not token.is_stop and # No es stopword de spaCy | |
| not token.pos_ == 'PROPN' and # No es nombre propio | |
| not token.pos_ == 'SYM' and # No es símbolo | |
| not token.pos_ == 'NUM' and # No es número | |
| not token.pos_ == 'X'): # No es otro | |
| # Convertir a minúsculas y añadir al contador | |
| word_freq[token.lemma_.lower()] += 1 | |
| # Filtrar conceptos por frecuencia mínima y ordenar por frecuencia | |
| concepts = [(word, freq) for word, freq in word_freq.items() | |
| if freq >= min_freq] | |
| concepts.sort(key=lambda x: x[1], reverse=True) | |
| logger.info(f"Identified {len(concepts)} key concepts after excluding entities") | |
| return concepts[:10] | |
| except Exception as e: | |
| logger.error(f"Error en identify_key_concepts: {str(e)}") | |
| return [] | |
| ######################################################################## | |
| def create_concept_graph(doc, key_concepts): | |
| """ | |
| Crea un grafo de relaciones entre conceptos, ignorando entidades. | |
| Args: | |
| doc: Documento procesado por spaCy | |
| key_concepts: Lista de tuplas (concepto, frecuencia) | |
| Returns: | |
| nx.Graph: Grafo de conceptos | |
| """ | |
| try: | |
| G = nx.Graph() | |
| # Crear un conjunto de conceptos clave para búsqueda rápida | |
| concept_words = {concept[0].lower() for concept in key_concepts} | |
| # Crear conjunto de tokens que son parte de entidades | |
| entity_tokens = set() | |
| for ent in doc.ents: | |
| entity_tokens.update(token.i for token in ent) | |
| # Añadir nodos al grafo | |
| for concept, freq in key_concepts: | |
| G.add_node(concept.lower(), weight=freq) | |
| # Analizar cada oración | |
| for sent in doc.sents: | |
| # Obtener conceptos en la oración actual, excluyendo entidades | |
| current_concepts = [] | |
| for token in sent: | |
| if (token.i not in entity_tokens and | |
| token.lemma_.lower() in concept_words): | |
| current_concepts.append(token.lemma_.lower()) | |
| # Crear conexiones entre conceptos en la misma oración | |
| for i, concept1 in enumerate(current_concepts): | |
| for concept2 in current_concepts[i+1:]: | |
| if concept1 != concept2: | |
| if G.has_edge(concept1, concept2): | |
| G[concept1][concept2]['weight'] += 1 | |
| else: | |
| G.add_edge(concept1, concept2, weight=1) | |
| return G | |
| except Exception as e: | |
| logger.error(f"Error en create_concept_graph: {str(e)}") | |
| return nx.Graph() | |
| ############################################################################### | |
| def visualize_concept_graph(G, lang_code): | |
| """ | |
| Visualiza el grafo de conceptos con layout consistente. | |
| Args: | |
| G: networkx.Graph - Grafo de conceptos | |
| lang_code: str - Código del idioma | |
| Returns: | |
| matplotlib.figure.Figure - Figura del grafo | |
| """ | |
| try: | |
| # Crear nueva figura con mayor tamaño y definir los ejes explícitamente | |
| fig, ax = plt.subplots(figsize=(15, 10)) | |
| if not G.nodes(): | |
| logger.warning("Grafo vacío, retornando figura vacía") | |
| return fig | |
| # Convertir grafo no dirigido a dirigido para mostrar flechas | |
| DG = nx.DiGraph(G) | |
| # Calcular centralidad de los nodos para el color | |
| centrality = nx.degree_centrality(G) | |
| # Establecer semilla para reproducibilidad | |
| seed = 42 | |
| # Calcular layout con parámetros fijos | |
| pos = nx.spring_layout( | |
| DG, | |
| k=2, # Distancia ideal entre nodos | |
| iterations=50, # Número de iteraciones | |
| seed=seed # Semilla fija para reproducibilidad | |
| ) | |
| # Calcular factor de escala basado en número de nodos | |
| num_nodes = len(DG.nodes()) | |
| scale_factor = 1000 if num_nodes < 10 else 500 if num_nodes < 20 else 200 | |
| # Obtener pesos ajustados | |
| node_weights = [DG.nodes[node].get('weight', 1) * scale_factor for node in DG.nodes()] | |
| edge_weights = [DG[u][v].get('weight', 1) for u, v in DG.edges()] | |
| # Crear mapa de colores basado en centralidad | |
| node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()] | |
| # Dibujar nodos | |
| nodes = nx.draw_networkx_nodes( | |
| DG, | |
| pos, | |
| node_size=node_weights, | |
| node_color=node_colors, | |
| alpha=0.7, | |
| ax=ax | |
| ) | |
| # Dibujar aristas con flechas | |
| edges = nx.draw_networkx_edges( | |
| DG, | |
| pos, | |
| width=edge_weights, | |
| alpha=0.6, | |
| edge_color='gray', | |
| arrows=True, | |
| arrowsize=20, | |
| arrowstyle='->', | |
| connectionstyle='arc3,rad=0.2', | |
| ax=ax | |
| ) | |
| # Ajustar tamaño de fuente según número de nodos | |
| font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8 | |
| # Dibujar etiquetas con fondo blanco para mejor legibilidad | |
| labels = nx.draw_networkx_labels( | |
| DG, | |
| pos, | |
| font_size=font_size, | |
| font_weight='bold', | |
| bbox=dict( | |
| facecolor='white', | |
| edgecolor='none', | |
| alpha=0.7 | |
| ), | |
| ax=ax | |
| ) | |
| # Añadir leyenda de centralidad | |
| sm = plt.cm.ScalarMappable( | |
| cmap=plt.cm.viridis, | |
| norm=plt.Normalize(vmin=0, vmax=1) | |
| ) | |
| sm.set_array([]) | |
| plt.colorbar(sm, ax=ax, label='Centralidad del concepto') | |
| plt.title("Red de conceptos relacionados", pad=20, fontsize=14) | |
| ax.set_axis_off() | |
| # Ajustar el layout para que la barra de color no se superponga | |
| plt.tight_layout() | |
| return fig | |
| except Exception as e: | |
| logger.error(f"Error en visualize_concept_graph: {str(e)}") | |
| return plt.figure() # Retornar figura vacía en caso de error | |
| ######################################################################## | |
| def create_entity_graph(entities): | |
| G = nx.Graph() | |
| for entity_type, entity_list in entities.items(): | |
| for entity in entity_list: | |
| G.add_node(entity, type=entity_type) | |
| for i, entity1 in enumerate(entity_list): | |
| for entity2 in entity_list[i+1:]: | |
| G.add_edge(entity1, entity2) | |
| return G | |
| ############################################################# | |
| def visualize_entity_graph(G, lang_code): | |
| fig, ax = plt.subplots(figsize=(12, 8)) | |
| pos = nx.spring_layout(G) | |
| for entity_type, color in ENTITY_LABELS[lang_code].items(): | |
| node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] | |
| nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) | |
| nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) | |
| nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) | |
| ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) | |
| ax.axis('off') | |
| plt.tight_layout() | |
| return fig | |
| ################################################################################# | |
| def create_topic_graph(topics, doc): | |
| G = nx.Graph() | |
| for topic in topics: | |
| G.add_node(topic, weight=doc.text.count(topic)) | |
| for i, topic1 in enumerate(topics): | |
| for topic2 in topics[i+1:]: | |
| weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) | |
| if weight > 0: | |
| G.add_edge(topic1, topic2, weight=weight) | |
| return G | |
| def visualize_topic_graph(G, lang_code): | |
| fig, ax = plt.subplots(figsize=(12, 8)) | |
| pos = nx.spring_layout(G) | |
| node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] | |
| nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) | |
| nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) | |
| edge_weights = [G[u][v]['weight'] for u, v in G.edges()] | |
| nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) | |
| ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) | |
| ax.axis('off') | |
| plt.tight_layout() | |
| return fig | |
| ########################################################################################### | |
| def generate_summary(doc, lang_code): | |
| sentences = list(doc.sents) | |
| summary = sentences[:3] # Toma las primeras 3 oraciones como resumen | |
| return " ".join([sent.text for sent in summary]) | |
| def extract_entities(doc, lang_code): | |
| entities = defaultdict(list) | |
| for ent in doc.ents: | |
| if ent.label_ in ENTITY_LABELS[lang_code]: | |
| entities[ent.label_].append(ent.text) | |
| return dict(entities) | |
| def analyze_sentiment(doc, lang_code): | |
| positive_words = sum(1 for token in doc if token.sentiment > 0) | |
| negative_words = sum(1 for token in doc if token.sentiment < 0) | |
| total_words = len(doc) | |
| if positive_words > negative_words: | |
| return "Positivo" | |
| elif negative_words > positive_words: | |
| return "Negativo" | |
| else: | |
| return "Neutral" | |
| def extract_topics(doc, lang_code): | |
| vectorizer = TfidfVectorizer(stop_words='english', max_features=5) | |
| tfidf_matrix = vectorizer.fit_transform([doc.text]) | |
| feature_names = vectorizer.get_feature_names_out() | |
| return list(feature_names) | |
| # Asegúrate de que todas las funciones necesarias estén exportadas | |
| __all__ = [ | |
| 'perform_semantic_analysis', | |
| 'identify_key_concepts', | |
| 'create_concept_graph', | |
| 'visualize_concept_graph', | |
| 'fig_to_bytes', # Faltaba esta coma | |
| 'ENTITY_LABELS', | |
| 'POS_COLORS', | |
| 'POS_TRANSLATIONS' | |
| ] |