Spaces:
Running
Running
Update modules/text_analysis/semantic_analysis.py
Browse files
modules/text_analysis/semantic_analysis.py
CHANGED
|
@@ -282,9 +282,10 @@ def create_concept_graph(doc, key_concepts):
|
|
| 282 |
return nx.Graph()
|
| 283 |
|
| 284 |
###############################################################################
|
|
|
|
| 285 |
def visualize_concept_graph(G, lang_code):
|
| 286 |
"""
|
| 287 |
-
Visualiza el grafo de conceptos con
|
| 288 |
Args:
|
| 289 |
G: networkx.Graph - Grafo de conceptos
|
| 290 |
lang_code: str - Código del idioma
|
|
@@ -305,8 +306,16 @@ def visualize_concept_graph(G, lang_code):
|
|
| 305 |
# Calcular centralidad de los nodos para el color
|
| 306 |
centrality = nx.degree_centrality(G)
|
| 307 |
|
| 308 |
-
#
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
# Calcular factor de escala basado en número de nodos
|
| 312 |
num_nodes = len(DG.nodes())
|
|
@@ -320,38 +329,51 @@ def visualize_concept_graph(G, lang_code):
|
|
| 320 |
node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()]
|
| 321 |
|
| 322 |
# Dibujar nodos
|
| 323 |
-
nodes = nx.draw_networkx_nodes(
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
# Dibujar aristas con flechas
|
| 330 |
-
edges = nx.draw_networkx_edges(
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
|
|
|
|
|
|
|
|
|
| 339 |
|
| 340 |
# Ajustar tamaño de fuente según número de nodos
|
| 341 |
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8
|
| 342 |
|
| 343 |
# Dibujar etiquetas con fondo blanco para mejor legibilidad
|
| 344 |
-
labels = nx.draw_networkx_labels(
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
sm.set_array([])
|
| 356 |
plt.colorbar(sm, ax=ax, label='Centralidad del concepto')
|
| 357 |
|
|
@@ -367,10 +389,6 @@ def visualize_concept_graph(G, lang_code):
|
|
| 367 |
logger.error(f"Error en visualize_concept_graph: {str(e)}")
|
| 368 |
return plt.figure() # Retornar figura vacía en caso de error
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
########################################################################
|
| 375 |
def create_entity_graph(entities):
|
| 376 |
G = nx.Graph()
|
|
|
|
| 282 |
return nx.Graph()
|
| 283 |
|
| 284 |
###############################################################################
|
| 285 |
+
|
| 286 |
def visualize_concept_graph(G, lang_code):
|
| 287 |
"""
|
| 288 |
+
Visualiza el grafo de conceptos con layout consistente.
|
| 289 |
Args:
|
| 290 |
G: networkx.Graph - Grafo de conceptos
|
| 291 |
lang_code: str - Código del idioma
|
|
|
|
| 306 |
# Calcular centralidad de los nodos para el color
|
| 307 |
centrality = nx.degree_centrality(G)
|
| 308 |
|
| 309 |
+
# Establecer semilla para reproducibilidad
|
| 310 |
+
seed = 42
|
| 311 |
+
|
| 312 |
+
# Calcular layout con parámetros fijos
|
| 313 |
+
pos = nx.spring_layout(
|
| 314 |
+
DG,
|
| 315 |
+
k=2, # Distancia ideal entre nodos
|
| 316 |
+
iterations=50, # Número de iteraciones
|
| 317 |
+
seed=seed # Semilla fija para reproducibilidad
|
| 318 |
+
)
|
| 319 |
|
| 320 |
# Calcular factor de escala basado en número de nodos
|
| 321 |
num_nodes = len(DG.nodes())
|
|
|
|
| 329 |
node_colors = [plt.cm.viridis(centrality[node]) for node in DG.nodes()]
|
| 330 |
|
| 331 |
# Dibujar nodos
|
| 332 |
+
nodes = nx.draw_networkx_nodes(
|
| 333 |
+
DG,
|
| 334 |
+
pos,
|
| 335 |
+
node_size=node_weights,
|
| 336 |
+
node_color=node_colors,
|
| 337 |
+
alpha=0.7,
|
| 338 |
+
ax=ax
|
| 339 |
+
)
|
| 340 |
|
| 341 |
# Dibujar aristas con flechas
|
| 342 |
+
edges = nx.draw_networkx_edges(
|
| 343 |
+
DG,
|
| 344 |
+
pos,
|
| 345 |
+
width=edge_weights,
|
| 346 |
+
alpha=0.6,
|
| 347 |
+
edge_color='gray',
|
| 348 |
+
arrows=True,
|
| 349 |
+
arrowsize=20,
|
| 350 |
+
arrowstyle='->',
|
| 351 |
+
connectionstyle='arc3,rad=0.2',
|
| 352 |
+
ax=ax
|
| 353 |
+
)
|
| 354 |
|
| 355 |
# Ajustar tamaño de fuente según número de nodos
|
| 356 |
font_size = 12 if num_nodes < 10 else 10 if num_nodes < 20 else 8
|
| 357 |
|
| 358 |
# Dibujar etiquetas con fondo blanco para mejor legibilidad
|
| 359 |
+
labels = nx.draw_networkx_labels(
|
| 360 |
+
DG,
|
| 361 |
+
pos,
|
| 362 |
+
font_size=font_size,
|
| 363 |
+
font_weight='bold',
|
| 364 |
+
bbox=dict(
|
| 365 |
+
facecolor='white',
|
| 366 |
+
edgecolor='none',
|
| 367 |
+
alpha=0.7
|
| 368 |
+
),
|
| 369 |
+
ax=ax
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
# Añadir leyenda de centralidad
|
| 373 |
+
sm = plt.cm.ScalarMappable(
|
| 374 |
+
cmap=plt.cm.viridis,
|
| 375 |
+
norm=plt.Normalize(vmin=0, vmax=1)
|
| 376 |
+
)
|
| 377 |
sm.set_array([])
|
| 378 |
plt.colorbar(sm, ax=ax, label='Centralidad del concepto')
|
| 379 |
|
|
|
|
| 389 |
logger.error(f"Error en visualize_concept_graph: {str(e)}")
|
| 390 |
return plt.figure() # Retornar figura vacía en caso de error
|
| 391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
########################################################################
|
| 393 |
def create_entity_graph(entities):
|
| 394 |
G = nx.Graph()
|