Update modules/semantic/semantic_interface.py
Browse files
modules/semantic/semantic_interface.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
#modules/semantic/semantic_interface.py
|
2 |
-
# Importaciones necesarias
|
3 |
import streamlit as st
|
4 |
from streamlit_float import *
|
5 |
from streamlit_antd_components import *
|
6 |
from streamlit.components.v1 import html
|
|
|
7 |
import io
|
8 |
from io import BytesIO
|
9 |
import base64
|
@@ -25,9 +25,25 @@ from ..utils.widget_utils import generate_unique_key
|
|
25 |
from ..database.semantic_mongo_db import store_student_semantic_result
|
26 |
from ..database.semantic_export import export_user_interactions
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def display_semantic_interface(lang_code, nlp_models, semantic_t):
|
33 |
"""
|
@@ -90,23 +106,36 @@ def display_semantic_interface(lang_code, nlp_models, semantic_t):
|
|
90 |
if analyze_button and st.session_state.semantic_file_content:
|
91 |
try:
|
92 |
with st.spinner(semantic_t.get('processing', 'Processing...')):
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
# Visualizar entidades nombradas
|
99 |
-
spacy_streamlit.visualize_ner(
|
100 |
-
doc,
|
101 |
-
labels=nlp_models[lang_code].get_pipe("ner").labels
|
102 |
)
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
except Exception as e:
|
111 |
logger.error(f"Error en análisis semántico: {str(e)}")
|
112 |
st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
|
@@ -133,20 +162,23 @@ def display_semantic_interface(lang_code, nlp_models, semantic_t):
|
|
133 |
st.session_state.semantic_analysis_counter += 1
|
134 |
st.rerun()
|
135 |
|
136 |
-
# Mostrar
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
st.info(semantic_t.get('initial_message', 'Upload a TXT file to begin analysis'))
|
139 |
|
140 |
except Exception as e:
|
141 |
logger.error(f"Error general en interfaz semántica: {str(e)}")
|
142 |
st.error("Se produjo un error. Por favor, intente de nuevo.")
|
143 |
|
144 |
-
|
145 |
-
# [Resto del código igual...] ###############################################################################################################
|
146 |
-
|
147 |
def display_semantic_results(result, lang_code, semantic_t):
|
148 |
"""
|
149 |
-
Muestra los resultados del análisis semántico
|
150 |
"""
|
151 |
if result is None or not result['success']:
|
152 |
st.warning(semantic_t.get('no_results', 'No results available'))
|
@@ -193,21 +225,4 @@ def display_semantic_results(result, lang_code, semantic_t):
|
|
193 |
# Columna 2: Gráfico de entidades
|
194 |
with col2:
|
195 |
st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
|
196 |
-
st.image(analysis['entity_graph'])
|
197 |
-
|
198 |
-
# Botón de exportación al final
|
199 |
-
col1, col2, col3 = st.columns([2,1,2])
|
200 |
-
with col2:
|
201 |
-
if st.button(
|
202 |
-
semantic_t.get('export_button', 'Export Analysis'),
|
203 |
-
key=f"semantic_export_{st.session_state.semantic_analysis_counter}",
|
204 |
-
use_container_width=True
|
205 |
-
):
|
206 |
-
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
|
207 |
-
st.download_button(
|
208 |
-
label=semantic_t.get('download_pdf', 'Download PDF'),
|
209 |
-
data=pdf_buffer,
|
210 |
-
file_name="semantic_analysis.pdf",
|
211 |
-
mime="application/pdf",
|
212 |
-
key=f"semantic_download_{st.session_state.semantic_analysis_counter}"
|
213 |
-
)
|
|
|
1 |
#modules/semantic/semantic_interface.py
|
|
|
2 |
import streamlit as st
|
3 |
from streamlit_float import *
|
4 |
from streamlit_antd_components import *
|
5 |
from streamlit.components.v1 import html
|
6 |
+
import spacy_streamlit
|
7 |
import io
|
8 |
from io import BytesIO
|
9 |
import base64
|
|
|
25 |
from ..database.semantic_mongo_db import store_student_semantic_result
|
26 |
from ..database.semantic_export import export_user_interactions
|
27 |
|
28 |
+
def handle_file_upload(uploaded_file):
|
29 |
+
"""
|
30 |
+
Maneja la carga de archivos y mantiene el estado
|
31 |
+
Args:
|
32 |
+
uploaded_file: Archivo subido a través del file_uploader
|
33 |
+
"""
|
34 |
+
try:
|
35 |
+
if uploaded_file is not None:
|
36 |
+
content = uploaded_file.getvalue().decode('utf-8')
|
37 |
+
st.session_state.semantic_file_content = content
|
38 |
+
st.session_state.page = 'semantic' # Mantener en la página semántica
|
39 |
+
logger.info(f"Archivo cargado exitosamente: {uploaded_file.name}")
|
40 |
+
else:
|
41 |
+
st.session_state.semantic_file_content = None
|
42 |
+
logger.info("No se ha cargado ningún archivo")
|
43 |
+
except Exception as e:
|
44 |
+
logger.error(f"Error al cargar archivo: {str(e)}")
|
45 |
+
st.error("Error al cargar el archivo. Asegúrese de que es un archivo de texto válido.")
|
46 |
+
st.session_state.semantic_file_content = None
|
47 |
|
48 |
def display_semantic_interface(lang_code, nlp_models, semantic_t):
|
49 |
"""
|
|
|
106 |
if analyze_button and st.session_state.semantic_file_content:
|
107 |
try:
|
108 |
with st.spinner(semantic_t.get('processing', 'Processing...')):
|
109 |
+
analysis_result = process_semantic_input(
|
110 |
+
st.session_state.semantic_file_content,
|
111 |
+
lang_code,
|
112 |
+
nlp_models,
|
113 |
+
semantic_t
|
|
|
|
|
|
|
|
|
114 |
)
|
115 |
|
116 |
+
if analysis_result['success']:
|
117 |
+
st.session_state.semantic_result = analysis_result
|
118 |
+
st.session_state.semantic_analysis_done = True
|
119 |
+
st.session_state.semantic_analysis_counter += 1
|
120 |
+
|
121 |
+
# Guardar en la base de datos
|
122 |
+
if store_student_semantic_result(
|
123 |
+
st.session_state.username,
|
124 |
+
st.session_state.semantic_file_content,
|
125 |
+
analysis_result['analysis']
|
126 |
+
):
|
127 |
+
st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
|
128 |
+
# Mostrar resultados
|
129 |
+
display_semantic_results(
|
130 |
+
analysis_result,
|
131 |
+
lang_code,
|
132 |
+
semantic_t
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
st.error(semantic_t.get('error_message', 'Error saving analysis'))
|
136 |
+
else:
|
137 |
+
st.error(analysis_result['message'])
|
138 |
+
|
139 |
except Exception as e:
|
140 |
logger.error(f"Error en análisis semántico: {str(e)}")
|
141 |
st.error(semantic_t.get('error_processing', f'Error processing text: {str(e)}'))
|
|
|
162 |
st.session_state.semantic_analysis_counter += 1
|
163 |
st.rerun()
|
164 |
|
165 |
+
# Mostrar resultados previos o mensaje inicial
|
166 |
+
elif st.session_state.semantic_analysis_done and 'semantic_result' in st.session_state:
|
167 |
+
display_semantic_results(
|
168 |
+
st.session_state.semantic_result,
|
169 |
+
lang_code,
|
170 |
+
semantic_t
|
171 |
+
)
|
172 |
+
elif not st.session_state.semantic_file_content:
|
173 |
st.info(semantic_t.get('initial_message', 'Upload a TXT file to begin analysis'))
|
174 |
|
175 |
except Exception as e:
|
176 |
logger.error(f"Error general en interfaz semántica: {str(e)}")
|
177 |
st.error("Se produjo un error. Por favor, intente de nuevo.")
|
178 |
|
|
|
|
|
|
|
179 |
def display_semantic_results(result, lang_code, semantic_t):
|
180 |
"""
|
181 |
+
Muestra los resultados del análisis semántico
|
182 |
"""
|
183 |
if result is None or not result['success']:
|
184 |
st.warning(semantic_t.get('no_results', 'No results available'))
|
|
|
225 |
# Columna 2: Gráfico de entidades
|
226 |
with col2:
|
227 |
st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
|
228 |
+
st.image(analysis['entity_graph'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|