File size: 6,464 Bytes
c7330d5 d4a5717 c7330d5 19de296 c7330d5 3f98e79 7c29197 3f98e79 7c29197 9cdec60 90e1fae 7c29197 90e1fae 7c29197 975486a 7c29197 90e1fae 7c29197 90e1fae 7c29197 3f98e79 7e3e643 d4a5717 7e3e643 d4a5717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
#modules/semantic/semantic_interface.py
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import spacy_streamlit
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import pandas as pd
import re
import logging
# Configuración del logger
logger = logging.getLogger(__name__)
# Importaciones locales
from .semantic_process import (
process_semantic_input,
format_semantic_results
)
from ..utils.widget_utils import generate_unique_key
from ..database.semantic_mongo_db import store_student_semantic_result
from ..database.semantic_export import export_user_interactions
def display_semantic_interface(lang_code, nlp_models, semantic_t):
"""
Interfaz para el análisis semántico
Args:
lang_code: Código del idioma actual
nlp_models: Modelos de spaCy cargados
semantic_t: Diccionario de traducciones
"""
# Mantener la página actual
st.session_state.page = 'semantic'
# Estilos para los botones y controles
st.markdown("""
<style>
.stButton button {
width: 100%;
padding: 0.5rem;
}
.upload-container {
display: flex;
align-items: center;
}
</style>
""", unsafe_allow_html=True)
# Contenedor principal para controles
with st.container():
# Área de carga de archivo y botones
col_upload, col_analyze, col_export, col_new = st.columns([4,2,2,2])
with col_upload:
uploaded_file = st.file_uploader(
semantic_t.get('file_uploader', 'Upload text file'),
type=['txt']
)
with col_analyze:
analyze_button = st.button(
semantic_t.get('analyze_button', 'Analyze'),
disabled=(uploaded_file is None)
)
with col_export:
export_button = st.button(
semantic_t.get('export_button', 'Export'),
disabled=not ('semantic_result' in st.session_state)
)
with col_new:
new_button = st.button(
semantic_t.get('new_analysis', 'New'),
disabled=not ('semantic_result' in st.session_state)
)
# Línea separadora
st.markdown("---")
# Lógica de análisis
if uploaded_file is not None and analyze_button:
try:
# Procesar el archivo
text_content = uploaded_file.getvalue().decode('utf-8')
with st.spinner(semantic_t.get('processing', 'Processing...')):
# Realizar análisis
analysis_result = perform_semantic_analysis(
text_content,
nlp_models[lang_code],
lang_code
)
# Guardar resultado
st.session_state.semantic_result = analysis_result
# Guardar en base de datos
if store_student_semantic_result(
st.session_state.username,
text_content,
analysis_result
):
st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
else:
st.error(semantic_t.get('error_message', 'Error saving analysis'))
# Mostrar resultados
display_semantic_results(analysis_result, lang_code, semantic_t)
except Exception as e:
st.error(f"Error: {str(e)}")
# Manejo de exportación
if export_button and 'semantic_result' in st.session_state:
try:
pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
st.download_button(
label=semantic_t.get('download_pdf', 'Download PDF'),
data=pdf_buffer,
file_name="semantic_analysis.pdf",
mime="application/pdf"
)
except Exception as e:
st.error(f"Error exporting: {str(e)}")
# Nuevo análisis
if new_button:
if 'semantic_result' in st.session_state:
del st.session_state.semantic_result
st.rerun()
# Mostrar resultados previos o mensaje inicial
if 'semantic_result' in st.session_state:
display_semantic_results(st.session_state.semantic_result, lang_code, semantic_t)
elif uploaded_file is None:
st.info(semantic_t.get('initial_message', 'Upload a file to begin analysis'))
def display_semantic_results(result, lang_code, semantic_t):
"""
Muestra los resultados del análisis semántico
"""
if result is None or not result['success']:
st.warning(semantic_t.get('no_results', 'No results available'))
return
analysis = result['analysis']
# Crear tabs para los resultados
tab1, tab2 = st.tabs([
semantic_t.get('concepts_tab', 'Key Concepts Analysis'),
semantic_t.get('entities_tab', 'Entities Analysis')
])
# Tab 1: Conceptos Clave
with tab1:
col1, col2 = st.columns(2)
# Columna 1: Lista de conceptos
with col1:
st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
concept_text = "\n".join([
f"• {concept} ({frequency:.2f})"
for concept, frequency in analysis['key_concepts']
])
st.markdown(concept_text)
# Columna 2: Gráfico de conceptos
with col2:
st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
st.image(analysis['concept_graph'])
# Tab 2: Entidades
with tab2:
col1, col2 = st.columns(2)
# Columna 1: Lista de entidades
with col1:
st.subheader(semantic_t.get('identified_entities', 'Identified Entities'))
if 'entities' in analysis:
for entity_type, entities in analysis['entities'].items():
st.markdown(f"**{entity_type}**")
st.markdown("• " + "\n• ".join(entities))
# Columna 2: Gráfico de entidades
with col2:
st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
st.image(analysis['entity_graph']) |