File size: 6,464 Bytes
c7330d5
 
 
 
 
d4a5717
c7330d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19de296
c7330d5
3f98e79
 
7c29197
 
 
 
 
3f98e79
7c29197
9cdec60
90e1fae
7c29197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90e1fae
7c29197
 
975486a
7c29197
90e1fae
7c29197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90e1fae
 
7c29197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f98e79
7e3e643
 
d4a5717
7e3e643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a5717
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#modules/semantic/semantic_interface.py
import streamlit as st
from streamlit_float import *
from streamlit_antd_components import *
from streamlit.components.v1 import html
import spacy_streamlit
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import pandas as pd
import re
import logging

# Configuración del logger
logger = logging.getLogger(__name__)

# Importaciones locales
from .semantic_process import (
    process_semantic_input,
    format_semantic_results
)

from ..utils.widget_utils import generate_unique_key
from ..database.semantic_mongo_db import store_student_semantic_result
from ..database.semantic_export import export_user_interactions

def display_semantic_interface(lang_code, nlp_models, semantic_t):
    """
    Interfaz para el análisis semántico
    Args:
        lang_code: Código del idioma actual
        nlp_models: Modelos de spaCy cargados
        semantic_t: Diccionario de traducciones
    """
    # Mantener la página actual
    st.session_state.page = 'semantic'

    # Estilos para los botones y controles
    st.markdown("""
        <style>
        .stButton button {
            width: 100%;
            padding: 0.5rem;
        }
        .upload-container {
            display: flex;
            align-items: center;
        }
        </style>
    """, unsafe_allow_html=True)

    # Contenedor principal para controles
    with st.container():
        # Área de carga de archivo y botones
        col_upload, col_analyze, col_export, col_new = st.columns([4,2,2,2])
        
        with col_upload:
            uploaded_file = st.file_uploader(
                semantic_t.get('file_uploader', 'Upload text file'), 
                type=['txt']
            )

        with col_analyze:
            analyze_button = st.button(
                semantic_t.get('analyze_button', 'Analyze'),
                disabled=(uploaded_file is None)
            )

        with col_export:
            export_button = st.button(
                semantic_t.get('export_button', 'Export'),
                disabled=not ('semantic_result' in st.session_state)
            )

        with col_new:
            new_button = st.button(
                semantic_t.get('new_analysis', 'New'),
                disabled=not ('semantic_result' in st.session_state)
            )

    # Línea separadora
    st.markdown("---")

    # Lógica de análisis
    if uploaded_file is not None and analyze_button:
        try:
            # Procesar el archivo
            text_content = uploaded_file.getvalue().decode('utf-8')
            
            with st.spinner(semantic_t.get('processing', 'Processing...')):
                # Realizar análisis
                analysis_result = perform_semantic_analysis(
                    text_content,
                    nlp_models[lang_code],
                    lang_code
                )
                
                # Guardar resultado
                st.session_state.semantic_result = analysis_result
                
                # Guardar en base de datos
                if store_student_semantic_result(
                    st.session_state.username,
                    text_content,
                    analysis_result
                ):
                    st.success(semantic_t.get('success_message', 'Analysis saved successfully'))
                else:
                    st.error(semantic_t.get('error_message', 'Error saving analysis'))
                
                # Mostrar resultados
                display_semantic_results(analysis_result, lang_code, semantic_t)
                
        except Exception as e:
            st.error(f"Error: {str(e)}")

    # Manejo de exportación
    if export_button and 'semantic_result' in st.session_state:
        try:
            pdf_buffer = export_user_interactions(st.session_state.username, 'semantic')
            st.download_button(
                label=semantic_t.get('download_pdf', 'Download PDF'),
                data=pdf_buffer,
                file_name="semantic_analysis.pdf",
                mime="application/pdf"
            )
        except Exception as e:
            st.error(f"Error exporting: {str(e)}")

    # Nuevo análisis
    if new_button:
        if 'semantic_result' in st.session_state:
            del st.session_state.semantic_result
        st.rerun()

    # Mostrar resultados previos o mensaje inicial
    if 'semantic_result' in st.session_state:
        display_semantic_results(st.session_state.semantic_result, lang_code, semantic_t)
    elif uploaded_file is None:
        st.info(semantic_t.get('initial_message', 'Upload a file to begin analysis'))


def display_semantic_results(result, lang_code, semantic_t):
    """
    Muestra los resultados del análisis semántico
    """
    if result is None or not result['success']:
        st.warning(semantic_t.get('no_results', 'No results available'))
        return

    analysis = result['analysis']
    
    # Crear tabs para los resultados
    tab1, tab2 = st.tabs([
        semantic_t.get('concepts_tab', 'Key Concepts Analysis'),
        semantic_t.get('entities_tab', 'Entities Analysis')
    ])
    
    # Tab 1: Conceptos Clave
    with tab1:
        col1, col2 = st.columns(2)
        
        # Columna 1: Lista de conceptos
        with col1:
            st.subheader(semantic_t.get('key_concepts', 'Key Concepts'))
            concept_text = "\n".join([
                f"• {concept} ({frequency:.2f})" 
                for concept, frequency in analysis['key_concepts']
            ])
            st.markdown(concept_text)
        
        # Columna 2: Gráfico de conceptos
        with col2:
            st.subheader(semantic_t.get('concept_graph', 'Concepts Graph'))
            st.image(analysis['concept_graph'])
    
    # Tab 2: Entidades
    with tab2:
        col1, col2 = st.columns(2)
        
        # Columna 1: Lista de entidades
        with col1:
            st.subheader(semantic_t.get('identified_entities', 'Identified Entities'))
            if 'entities' in analysis:
                for entity_type, entities in analysis['entities'].items():
                    st.markdown(f"**{entity_type}**")
                    st.markdown("• " + "\n• ".join(entities))
        
        # Columna 2: Gráfico de entidades
        with col2:
            st.subheader(semantic_t.get('entity_graph', 'Entities Graph'))
            st.image(analysis['entity_graph'])