Spaces:
Sleeping
Sleeping
Update modules/studentact/current_situation_analysis.py
Browse files
modules/studentact/current_situation_analysis.py
CHANGED
|
@@ -75,16 +75,197 @@ def analyze_text_dimensions(doc):
|
|
| 75 |
raise
|
| 76 |
|
| 77 |
def analyze_clarity(doc):
|
| 78 |
-
"""
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
def analyze_vocabulary_diversity(doc):
|
| 84 |
-
"""
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
def analyze_cohesion(doc):
|
| 90 |
"""Analiza la cohesi贸n textual"""
|
|
|
|
| 75 |
raise
|
| 76 |
|
| 77 |
def analyze_clarity(doc):
|
| 78 |
+
"""
|
| 79 |
+
Analiza la claridad del texto considerando m煤ltiples factores:
|
| 80 |
+
- Longitud y variaci贸n de oraciones
|
| 81 |
+
- Uso de conectores
|
| 82 |
+
- Complejidad estructural
|
| 83 |
+
- Claridad referencial
|
| 84 |
+
- Densidad l茅xica
|
| 85 |
+
"""
|
| 86 |
+
try:
|
| 87 |
+
# 1. An谩lisis de oraciones
|
| 88 |
+
sentences = list(doc.sents)
|
| 89 |
+
if not sentences:
|
| 90 |
+
return 0.0
|
| 91 |
+
|
| 92 |
+
# Longitud de oraciones
|
| 93 |
+
sentence_lengths = [len(sent) for sent in sentences]
|
| 94 |
+
avg_length = sum(sentence_lengths) / len(sentences)
|
| 95 |
+
length_variation = np.std(sentence_lengths) if len(sentences) > 1 else 0
|
| 96 |
+
|
| 97 |
+
# Penalizar oraciones muy cortas o muy largas
|
| 98 |
+
length_score = normalize_score(
|
| 99 |
+
avg_length,
|
| 100 |
+
optimal_length=20, # Longitud 贸ptima
|
| 101 |
+
range_factor=1.5 # Factor de tolerancia
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# 2. An谩lisis de conectores
|
| 105 |
+
connector_count = 0
|
| 106 |
+
connector_types = {
|
| 107 |
+
'CCONJ': 0.8, # Coordinantes
|
| 108 |
+
'SCONJ': 1.0, # Subordinantes
|
| 109 |
+
'ADV': 0.6 # Adverbios conectivos
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
for token in doc:
|
| 113 |
+
if token.pos_ in connector_types and token.dep_ in ['cc', 'mark', 'advmod']:
|
| 114 |
+
connector_count += connector_types[token.pos_]
|
| 115 |
+
|
| 116 |
+
connector_score = min(1.0, connector_count / (len(sentences) * 0.8))
|
| 117 |
+
|
| 118 |
+
# 3. Complejidad estructural
|
| 119 |
+
clause_count = 0
|
| 120 |
+
for sent in sentences:
|
| 121 |
+
verbs = [token for token in sent if token.pos_ == 'VERB']
|
| 122 |
+
clause_count += len(verbs)
|
| 123 |
+
|
| 124 |
+
complexity_score = normalize_score(
|
| 125 |
+
clause_count / len(sentences),
|
| 126 |
+
optimal_value=2.0, # Promedio 贸ptimo de cl谩usulas por oraci贸n
|
| 127 |
+
range_factor=1.5
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# 4. Claridad referencial
|
| 131 |
+
reference_score = analyze_reference_clarity(doc)
|
| 132 |
+
|
| 133 |
+
# 5. Densidad l茅xica
|
| 134 |
+
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
|
| 135 |
+
function_words = len([token for token in doc if token.pos_ not in ['NOUN', 'VERB', 'ADJ', 'ADV']])
|
| 136 |
+
density_score = normalize_score(
|
| 137 |
+
content_words / (content_words + function_words) if (content_words + function_words) > 0 else 0,
|
| 138 |
+
optimal_value=0.6, # 60% de palabras de contenido es 贸ptimo
|
| 139 |
+
range_factor=1.5
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# Pesos para cada factor
|
| 143 |
+
weights = {
|
| 144 |
+
'length': 0.2,
|
| 145 |
+
'connectors': 0.2,
|
| 146 |
+
'complexity': 0.2,
|
| 147 |
+
'reference': 0.2,
|
| 148 |
+
'density': 0.2
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
# C谩lculo del score final ponderado
|
| 152 |
+
clarity_score = (
|
| 153 |
+
weights['length'] * length_score +
|
| 154 |
+
weights['connectors'] * connector_score +
|
| 155 |
+
weights['complexity'] * complexity_score +
|
| 156 |
+
weights['reference'] * reference_score +
|
| 157 |
+
weights['density'] * density_score
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Informaci贸n detallada para diagn贸stico
|
| 161 |
+
details = {
|
| 162 |
+
'length_score': length_score,
|
| 163 |
+
'connector_score': connector_score,
|
| 164 |
+
'complexity_score': complexity_score,
|
| 165 |
+
'reference_score': reference_score,
|
| 166 |
+
'density_score': density_score,
|
| 167 |
+
'avg_sentence_length': avg_length,
|
| 168 |
+
'length_variation': length_variation,
|
| 169 |
+
'connectors_per_sentence': connector_count / len(sentences)
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
return clarity_score, details
|
| 173 |
+
|
| 174 |
+
except Exception as e:
|
| 175 |
+
logger.error(f"Error en analyze_clarity: {str(e)}")
|
| 176 |
+
return 0.0, {}
|
| 177 |
+
|
| 178 |
+
def analyze_reference_clarity(doc):
|
| 179 |
+
"""
|
| 180 |
+
Analiza la claridad de las referencias en el texto
|
| 181 |
+
"""
|
| 182 |
+
try:
|
| 183 |
+
# Contar referencias anaf贸ricas
|
| 184 |
+
reference_count = 0
|
| 185 |
+
unclear_references = 0
|
| 186 |
+
|
| 187 |
+
for token in doc:
|
| 188 |
+
# Detectar pronombres y determinantes
|
| 189 |
+
if token.pos_ in ['PRON', 'DET']:
|
| 190 |
+
reference_count += 1
|
| 191 |
+
|
| 192 |
+
# Verificar si tiene antecedente claro
|
| 193 |
+
has_antecedent = False
|
| 194 |
+
for ancestor in token.ancestors:
|
| 195 |
+
if ancestor.pos_ == 'NOUN':
|
| 196 |
+
has_antecedent = True
|
| 197 |
+
break
|
| 198 |
+
|
| 199 |
+
if not has_antecedent:
|
| 200 |
+
unclear_references += 1
|
| 201 |
+
|
| 202 |
+
# Calcular score
|
| 203 |
+
if reference_count == 0:
|
| 204 |
+
return 1.0 # No hay referencias = claridad m谩xima
|
| 205 |
+
|
| 206 |
+
clarity = 1.0 - (unclear_references / reference_count)
|
| 207 |
+
return max(0.0, min(1.0, clarity))
|
| 208 |
+
|
| 209 |
+
except Exception as e:
|
| 210 |
+
logger.error(f"Error en analyze_reference_clarity: {str(e)}")
|
| 211 |
+
return 0.0
|
| 212 |
|
| 213 |
def analyze_vocabulary_diversity(doc):
|
| 214 |
+
"""An谩lisis mejorado de la diversidad y calidad del vocabulario"""
|
| 215 |
+
try:
|
| 216 |
+
# 1. An谩lisis b谩sico de diversidad
|
| 217 |
+
unique_lemmas = {token.lemma_ for token in doc if token.is_alpha}
|
| 218 |
+
total_words = len([token for token in doc if token.is_alpha])
|
| 219 |
+
basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0
|
| 220 |
+
|
| 221 |
+
# 2. An谩lisis de registro
|
| 222 |
+
academic_words = 0
|
| 223 |
+
narrative_words = 0
|
| 224 |
+
technical_terms = 0
|
| 225 |
+
|
| 226 |
+
# Clasificar palabras por registro
|
| 227 |
+
for token in doc:
|
| 228 |
+
if token.is_alpha:
|
| 229 |
+
# Detectar t茅rminos acad茅micos/t茅cnicos
|
| 230 |
+
if token.pos_ in ['NOUN', 'VERB', 'ADJ']:
|
| 231 |
+
if any(parent.pos_ == 'NOUN' for parent in token.ancestors):
|
| 232 |
+
technical_terms += 1
|
| 233 |
+
# Detectar palabras narrativas
|
| 234 |
+
if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']:
|
| 235 |
+
narrative_words += 1
|
| 236 |
+
|
| 237 |
+
# 3. An谩lisis de complejidad sint谩ctica
|
| 238 |
+
avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents))
|
| 239 |
+
|
| 240 |
+
# 4. Calcular score ponderado
|
| 241 |
+
weights = {
|
| 242 |
+
'diversity': 0.3,
|
| 243 |
+
'technical': 0.3,
|
| 244 |
+
'narrative': 0.2,
|
| 245 |
+
'complexity': 0.2
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
scores = {
|
| 249 |
+
'diversity': basic_diversity,
|
| 250 |
+
'technical': technical_terms / total_words if total_words > 0 else 0,
|
| 251 |
+
'narrative': narrative_words / total_words if total_words > 0 else 0,
|
| 252 |
+
'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras
|
| 253 |
+
}
|
| 254 |
+
|
| 255 |
+
# Score final ponderado
|
| 256 |
+
final_score = sum(weights[key] * scores[key] for key in weights)
|
| 257 |
+
|
| 258 |
+
# Informaci贸n adicional para diagn贸stico
|
| 259 |
+
details = {
|
| 260 |
+
'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic',
|
| 261 |
+
'scores': scores
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
return final_score, details
|
| 265 |
+
|
| 266 |
+
except Exception as e:
|
| 267 |
+
logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}")
|
| 268 |
+
return 0.0, {}
|
| 269 |
|
| 270 |
def analyze_cohesion(doc):
|
| 271 |
"""Analiza la cohesi贸n textual"""
|