Spaces:
Sleeping
Sleeping
File size: 5,542 Bytes
fd32a0e 7bc12c3 fd32a0e 6c9c3b6 fd32a0e e5bf814 c3846ff e5bf814 fd32a0e 8eaf610 fd32a0e 669cec7 fd32a0e cf13f62 fd32a0e cf13f62 fd32a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
#refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb
#huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main
import gradio as gr
from openai import OpenAI
import os
import json
ACCESS_TOKEN = os.getenv("myHFapiToken")
print("Access token loaded.")
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("Client initialized.")
SYSTEM_PROMPTS0 = os.getenv("SYSTEM_PROMPTS")
import ast
SYSTEM_PROMPTS = ast.literal_eval(SYSTEM_PROMPTS0) # Convert string back to dictionary
def respond(
message,
history: list[tuple[str, str]],
preset_prompt,
custom_prompt,
max_tokens,
temperature,
top_p,
model_name,
):
print(f"Received message: {message}")
print(f"History: {history}")
system_message = custom_prompt if custom_prompt.strip() else SYSTEM_PROMPTS[preset_prompt]
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Selected model: {model_name}")
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
print(f"Added user message to context: {val[0]}")
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
print(f"Added assistant message to context: {val[1]}")
messages.append({"role": "user", "content": message})
response = ""
print("Sending request to OpenAI API.")
for message in client.chat.completions.create(
model=model_name,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
messages=messages,
):
token = message.choices[0].delta.content
print(f"Received token: {token}")
response += token
yield response
print("Completed response generation.")
models = [
"meta-llama/Llama-3.2-3B-Instruct",
"PowerInfer/SmallThinker-3B-Preview",
"Qwen/QwQ-32B-Preview",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3-mini-128k-instruct",
]
with gr.Blocks(css=".main-container {max-width: 900px; margin: auto;}") as demo:
# Add the banner image
with gr.Row():
gr.Image("banner.png", elem_id="banner-image", show_label=False)
# Title and description
gr.Markdown(
"""
# 🧠 LLM Test Platform
Welcome to the **LLM Test Platform**! Use this interface to interact with various AI language models.
Configure the settings, provide your input, and explore the capabilities of state-of-the-art models.
""",
elem_id="title",
)
with gr.Row():
model_dropdown = gr.Dropdown(
choices=models,
value=models[0],
label="**Select Model:**",
elem_id="model-dropdown"
)
# Create the chat components
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(height=500, elem_id="chatbot") # No `.style()`
with gr.Column(scale=1):
msg = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
container=False,
elem_id="input-box"
)
clear = gr.Button("Clear", elem_id="clear-button")
# Additional configuration inputs in an accordion
with gr.Accordion("⚙️ Configuration", open=False):
preset_prompt = gr.Dropdown(
choices=list(SYSTEM_PROMPTS.keys()),
value=list(SYSTEM_PROMPTS.keys())[0],
label="**Select System Prompt:**",
)
custom_prompt = gr.Textbox(
value="",
label="**Custom System Prompt (leave blank to use preset):**",
lines=2
)
max_tokens = gr.Slider(
minimum=1,
maximum=8192,
value=2048,
step=1,
label="**Max new tokens:**"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.3,
step=0.1,
label="**Temperature:**"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="**Top-P:**"
)
# Set up the chat functionality
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(
history,
preset_prompt,
custom_prompt,
max_tokens,
temperature,
top_p,
model_name
):
history[-1][1] = ""
for character in respond(
history[-1][0],
history[:-1],
preset_prompt,
custom_prompt,
max_tokens,
temperature,
top_p,
model_name
):
history[-1][1] = character
yield history
msg.submit(
user,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
[chatbot, preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_dropdown],
chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |