File size: 5,542 Bytes
fd32a0e
 
 
 
 
 
7bc12c3
fd32a0e
6c9c3b6
fd32a0e
 
 
 
 
 
 
 
 
 
e5bf814
c3846ff
e5bf814
fd32a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eaf610
fd32a0e
 
 
 
 
 
 
 
 
669cec7
fd32a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf13f62
fd32a0e
 
cf13f62
fd32a0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb
#huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main

import gradio as gr
from openai import OpenAI
import os
import json

ACCESS_TOKEN = os.getenv("myHFapiToken")

print("Access token loaded.")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

print("Client initialized.")

SYSTEM_PROMPTS0 = os.getenv("SYSTEM_PROMPTS")
import ast
SYSTEM_PROMPTS = ast.literal_eval(SYSTEM_PROMPTS0) # Convert string back to dictionary

def respond(
    message,
    history: list[tuple[str, str]],
    preset_prompt,
    custom_prompt,
    max_tokens,
    temperature,
    top_p,
    model_name,
):
    print(f"Received message: {message}")
    print(f"History: {history}")
    
    system_message = custom_prompt if custom_prompt.strip() else SYSTEM_PROMPTS[preset_prompt]
    
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Selected model: {model_name}")

    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
            print(f"Added user message to context: {val[0]}")
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
            print(f"Added assistant message to context: {val[1]}")

    messages.append({"role": "user", "content": message})

    response = ""
    print("Sending request to OpenAI API.")
    
    for message in client.chat.completions.create(
        model=model_name,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        messages=messages,
    ):
        token = message.choices[0].delta.content
        print(f"Received token: {token}")
        response += token
        yield response

    print("Completed response generation.")

models = [
    "meta-llama/Llama-3.2-3B-Instruct",
    "PowerInfer/SmallThinker-3B-Preview",
    "Qwen/QwQ-32B-Preview",
    "Qwen/Qwen2.5-Coder-32B-Instruct",
    "microsoft/Phi-3-mini-128k-instruct",
]

with gr.Blocks(css=".main-container {max-width: 900px; margin: auto;}") as demo:
    # Add the banner image
    with gr.Row():
        gr.Image("banner.png", elem_id="banner-image", show_label=False)

    # Title and description
    gr.Markdown(
        """
        # 🧠 LLM Test Platform
        Welcome to the **LLM Test Platform**! Use this interface to interact with various AI language models. 
        Configure the settings, provide your input, and explore the capabilities of state-of-the-art models.
        """,
        elem_id="title",
    )
    
    with gr.Row():
        model_dropdown = gr.Dropdown(
            choices=models, 
            value=models[0], 
            label="**Select Model:**",
            elem_id="model-dropdown"
        )

    # Create the chat components
    with gr.Row():
        with gr.Column():
            chatbot = gr.Chatbot(height=500, elem_id="chatbot")  # No `.style()`
        with gr.Column(scale=1):
            msg = gr.Textbox(
                show_label=False,
                placeholder="Type your message here...",
                container=False,
                elem_id="input-box"
            )
            clear = gr.Button("Clear", elem_id="clear-button")

    # Additional configuration inputs in an accordion
    with gr.Accordion("⚙️ Configuration", open=False):
        preset_prompt = gr.Dropdown(
            choices=list(SYSTEM_PROMPTS.keys()),
            value=list(SYSTEM_PROMPTS.keys())[0],
            label="**Select System Prompt:**",
        )
        custom_prompt = gr.Textbox(
            value="",
            label="**Custom System Prompt (leave blank to use preset):**",
            lines=2
        )
        max_tokens = gr.Slider(
            minimum=1,
            maximum=8192,
            value=2048,
            step=1,
            label="**Max new tokens:**"
        )
        temperature = gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.3,
            step=0.1,
            label="**Temperature:**"
        )
        top_p = gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="**Top-P:**"
        )

    # Set up the chat functionality
    def user(user_message, history):
        return "", history + [[user_message, None]]

    def bot(
        history,
        preset_prompt,
        custom_prompt,
        max_tokens,
        temperature,
        top_p,
        model_name
    ):
        history[-1][1] = ""
        for character in respond(
            history[-1][0],
            history[:-1],
            preset_prompt,
            custom_prompt,
            max_tokens,
            temperature,
            top_p,
            model_name
        ):
            history[-1][1] = character
            yield history

    msg.submit(
        user,
        [msg, chatbot],
        [msg, chatbot],
        queue=False
    ).then(
        bot,
        [chatbot, preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_dropdown],
        chatbot
    )

    clear.click(lambda: None, None, chatbot, queue=False)

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()