Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb
|
2 |
+
#huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
from openai import OpenAI
|
6 |
+
import os
|
7 |
+
|
8 |
+
ACCESS_TOKEN = os.getenv("myHFtoken")
|
9 |
+
|
10 |
+
print("Access token loaded.")
|
11 |
+
|
12 |
+
client = OpenAI(
|
13 |
+
base_url="https://api-inference.huggingface.co/v1/",
|
14 |
+
api_key=ACCESS_TOKEN,
|
15 |
+
)
|
16 |
+
|
17 |
+
print("Client initialized.")
|
18 |
+
|
19 |
+
SYSTEM_PROMPTS = {
|
20 |
+
"zh-HK": "用香港的廣東話(Cantonese)對話. No chatty. Answer in simple but accurate way.",
|
21 |
+
"zh-TW": "Chat by Traditional Chinese language of Taiwan (zh-TW). No chatty. Answer in simple but accurate way.",
|
22 |
+
"EN: General Assistant": "You are a helpful, respectful and honest assistant. Always provide accurate information and admit when you're not sure about something.",
|
23 |
+
"EN: Code Helper": "You are a programming assistant. Help users with coding questions, debugging, and best practices. Provide clear explanations and code examples when appropriate.",
|
24 |
+
"EN: Creative Writer": "You are a creative writing assistant. Help users with storytelling, character development, and creative writing techniques. Be imaginative and encouraging."
|
25 |
+
}
|
26 |
+
|
27 |
+
def respond(
|
28 |
+
message,
|
29 |
+
history: list[tuple[str, str]],
|
30 |
+
preset_prompt,
|
31 |
+
custom_prompt,
|
32 |
+
max_tokens,
|
33 |
+
temperature,
|
34 |
+
top_p,
|
35 |
+
model_name,
|
36 |
+
):
|
37 |
+
print(f"Received message: {message}")
|
38 |
+
print(f"History: {history}")
|
39 |
+
|
40 |
+
system_message = custom_prompt if custom_prompt.strip() else SYSTEM_PROMPTS[preset_prompt]
|
41 |
+
|
42 |
+
print(f"System message: {system_message}")
|
43 |
+
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
44 |
+
print(f"Selected model: {model_name}")
|
45 |
+
|
46 |
+
messages = [{"role": "system", "content": system_message}]
|
47 |
+
|
48 |
+
for val in history:
|
49 |
+
if val[0]:
|
50 |
+
messages.append({"role": "user", "content": val[0]})
|
51 |
+
print(f"Added user message to context: {val[0]}")
|
52 |
+
if val[1]:
|
53 |
+
messages.append({"role": "assistant", "content": val[1]})
|
54 |
+
print(f"Added assistant message to context: {val[1]}")
|
55 |
+
|
56 |
+
messages.append({"role": "user", "content": message})
|
57 |
+
|
58 |
+
response = ""
|
59 |
+
print("Sending request to OpenAI API.")
|
60 |
+
|
61 |
+
for message in client.chat.completions.create(
|
62 |
+
model=model_name,
|
63 |
+
max_tokens=max_tokens,
|
64 |
+
stream=True,
|
65 |
+
temperature=temperature,
|
66 |
+
top_p=top_p,
|
67 |
+
messages=messages,
|
68 |
+
):
|
69 |
+
token = message.choices[0].delta.content
|
70 |
+
print(f"Received token: {token}")
|
71 |
+
response += token
|
72 |
+
yield response
|
73 |
+
|
74 |
+
print("Completed response generation.")
|
75 |
+
|
76 |
+
models = [
|
77 |
+
"PowerInfer/SmallThinker-3B-Preview",
|
78 |
+
"Qwen/QwQ-32B-Preview",
|
79 |
+
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
80 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
81 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
82 |
+
]
|
83 |
+
|
84 |
+
with gr.Blocks(css=".main-container {max-width: 900px; margin: auto;}") as demo:
|
85 |
+
# Add the banner image
|
86 |
+
with gr.Row():
|
87 |
+
gr.Image("banner.png", elem_id="banner-image", show_label=False).style(height=200)
|
88 |
+
|
89 |
+
# Title and description
|
90 |
+
gr.Markdown(
|
91 |
+
"""
|
92 |
+
# 🧠 LLM Test Platform
|
93 |
+
Welcome to the **LLM Test Platform**! Use this interface to interact with various AI language models.
|
94 |
+
Configure the settings, provide your input, and explore the capabilities of state-of-the-art models.
|
95 |
+
""",
|
96 |
+
elem_id="title",
|
97 |
+
)
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
model_dropdown = gr.Dropdown(
|
101 |
+
choices=models,
|
102 |
+
value=models[0],
|
103 |
+
label="**Select Model:**",
|
104 |
+
elem_id="model-dropdown"
|
105 |
+
)
|
106 |
+
|
107 |
+
# Create the chat components in a card-style layout
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column():
|
110 |
+
chatbot = gr.Chatbot(height=500, elem_id="chatbot").style(container=True)
|
111 |
+
with gr.Column(scale=1):
|
112 |
+
msg = gr.Textbox(
|
113 |
+
show_label=False,
|
114 |
+
placeholder="Type your message here...",
|
115 |
+
container=False,
|
116 |
+
elem_id="input-box"
|
117 |
+
)
|
118 |
+
clear = gr.Button("Clear", elem_id="clear-button")
|
119 |
+
|
120 |
+
# Additional configuration inputs in an accordion
|
121 |
+
with gr.Accordion("⚙️ Configuration", open=False):
|
122 |
+
preset_prompt = gr.Dropdown(
|
123 |
+
choices=list(SYSTEM_PROMPTS.keys()),
|
124 |
+
value=list(SYSTEM_PROMPTS.keys())[0],
|
125 |
+
label="**Select System Prompt:**",
|
126 |
+
)
|
127 |
+
custom_prompt = gr.Textbox(
|
128 |
+
value="",
|
129 |
+
label="**Custom System Prompt (leave blank to use preset):**",
|
130 |
+
lines=2
|
131 |
+
)
|
132 |
+
max_tokens = gr.Slider(
|
133 |
+
minimum=1,
|
134 |
+
maximum=8192,
|
135 |
+
value=2048,
|
136 |
+
step=1,
|
137 |
+
label="**Max new tokens:**"
|
138 |
+
)
|
139 |
+
temperature = gr.Slider(
|
140 |
+
minimum=0.1,
|
141 |
+
maximum=1.0,
|
142 |
+
value=0.3,
|
143 |
+
step=0.1,
|
144 |
+
label="**Temperature:**"
|
145 |
+
)
|
146 |
+
top_p = gr.Slider(
|
147 |
+
minimum=0.1,
|
148 |
+
maximum=1.0,
|
149 |
+
value=0.95,
|
150 |
+
step=0.05,
|
151 |
+
label="**Top-P:**"
|
152 |
+
)
|
153 |
+
|
154 |
+
# Set up the chat functionality
|
155 |
+
def user(user_message, history):
|
156 |
+
return "", history + [[user_message, None]]
|
157 |
+
|
158 |
+
def bot(
|
159 |
+
history,
|
160 |
+
preset_prompt,
|
161 |
+
custom_prompt,
|
162 |
+
max_tokens,
|
163 |
+
temperature,
|
164 |
+
top_p,
|
165 |
+
model_name
|
166 |
+
):
|
167 |
+
history[-1][1] = ""
|
168 |
+
for character in respond(
|
169 |
+
history[-1][0],
|
170 |
+
history[:-1],
|
171 |
+
preset_prompt,
|
172 |
+
custom_prompt,
|
173 |
+
max_tokens,
|
174 |
+
temperature,
|
175 |
+
top_p,
|
176 |
+
model_name
|
177 |
+
):
|
178 |
+
history[-1][1] = character
|
179 |
+
yield history
|
180 |
+
|
181 |
+
msg.submit(
|
182 |
+
user,
|
183 |
+
[msg, chatbot],
|
184 |
+
[msg, chatbot],
|
185 |
+
queue=False
|
186 |
+
).then(
|
187 |
+
bot,
|
188 |
+
[chatbot, preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_dropdown],
|
189 |
+
chatbot
|
190 |
+
)
|
191 |
+
|
192 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
193 |
+
|
194 |
+
print("Gradio interface initialized.")
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
print("Launching the demo application.")
|
198 |
+
demo.launch()
|