Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -69,7 +69,8 @@ def generate_html_table_from_df(df):
|
|
69 |
html += '<tbody>'
|
70 |
for _, row in df.iterrows():
|
71 |
energy_numeric = row['gpu_energy_numeric']
|
72 |
-
|
|
|
73 |
bar_width = (energy_numeric / max_energy) * 100
|
74 |
score_val = row['energy_score']
|
75 |
bar_color = color_map.get(str(score_val), "gray")
|
@@ -108,6 +109,20 @@ def compute_efficiency_ratio(df):
|
|
108 |
ratio = max_val / min_val if min_val > 0 else 1
|
109 |
return ratio
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
def get_global_callout():
|
112 |
all_df = pd.DataFrame()
|
113 |
for task in tasks:
|
@@ -117,9 +132,10 @@ def get_global_callout():
|
|
117 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
118 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
119 |
ratio = compute_efficiency_ratio(all_df)
|
120 |
-
return
|
|
|
|
|
121 |
|
122 |
-
### ZIP DOWNLOAD (unchanged) ###
|
123 |
def zip_csv_files():
|
124 |
data_dir = "data/energy"
|
125 |
zip_filename = "data.zip"
|
@@ -143,7 +159,7 @@ def get_zip_data_link():
|
|
143 |
)
|
144 |
return href
|
145 |
|
146 |
-
### UPDATE FUNCTIONS
|
147 |
|
148 |
def update_text_generation(selected_display, sort_order):
|
149 |
mapping = {
|
@@ -158,75 +174,74 @@ def update_text_generation(selected_display, sort_order):
|
|
158 |
return df
|
159 |
df = process_df('text_generation.csv', sort_order, filter_fn)
|
160 |
ratio = compute_efficiency_ratio(df)
|
161 |
-
callout =
|
162 |
table_html = generate_html_table_from_df(df)
|
163 |
return callout, table_html
|
164 |
|
165 |
def update_image_generation(sort_order):
|
166 |
df = process_df('image_generation.csv', sort_order)
|
167 |
ratio = compute_efficiency_ratio(df)
|
168 |
-
callout =
|
169 |
table_html = generate_html_table_from_df(df)
|
170 |
return callout, table_html
|
171 |
|
172 |
def update_text_classification(sort_order):
|
173 |
df = process_df('text_classification.csv', sort_order)
|
174 |
ratio = compute_efficiency_ratio(df)
|
175 |
-
callout =
|
176 |
table_html = generate_html_table_from_df(df)
|
177 |
return callout, table_html
|
178 |
|
179 |
def update_image_classification(sort_order):
|
180 |
df = process_df('image_classification.csv', sort_order)
|
181 |
ratio = compute_efficiency_ratio(df)
|
182 |
-
callout =
|
183 |
table_html = generate_html_table_from_df(df)
|
184 |
return callout, table_html
|
185 |
|
186 |
def update_image_captioning(sort_order):
|
187 |
df = process_df('image_captioning.csv', sort_order)
|
188 |
ratio = compute_efficiency_ratio(df)
|
189 |
-
callout =
|
190 |
table_html = generate_html_table_from_df(df)
|
191 |
return callout, table_html
|
192 |
|
193 |
def update_summarization(sort_order):
|
194 |
df = process_df('summarization.csv', sort_order)
|
195 |
ratio = compute_efficiency_ratio(df)
|
196 |
-
callout =
|
197 |
table_html = generate_html_table_from_df(df)
|
198 |
return callout, table_html
|
199 |
|
200 |
def update_asr(sort_order):
|
201 |
df = process_df('asr.csv', sort_order)
|
202 |
ratio = compute_efficiency_ratio(df)
|
203 |
-
callout =
|
204 |
table_html = generate_html_table_from_df(df)
|
205 |
return callout, table_html
|
206 |
|
207 |
def update_object_detection(sort_order):
|
208 |
df = process_df('object_detection.csv', sort_order)
|
209 |
ratio = compute_efficiency_ratio(df)
|
210 |
-
callout =
|
211 |
table_html = generate_html_table_from_df(df)
|
212 |
return callout, table_html
|
213 |
|
214 |
def update_sentence_similarity(sort_order):
|
215 |
df = process_df('sentence_similarity.csv', sort_order)
|
216 |
ratio = compute_efficiency_ratio(df)
|
217 |
-
callout =
|
218 |
table_html = generate_html_table_from_df(df)
|
219 |
return callout, table_html
|
220 |
|
221 |
def update_extractive_qa(sort_order):
|
222 |
df = process_df('question_answering.csv', sort_order)
|
223 |
ratio = compute_efficiency_ratio(df)
|
224 |
-
callout =
|
225 |
table_html = generate_html_table_from_df(df)
|
226 |
return callout, table_html
|
227 |
|
228 |
def update_all_tasks(sort_order):
|
229 |
-
# Process all CSV files together
|
230 |
all_df = pd.DataFrame()
|
231 |
for task in tasks:
|
232 |
df = pd.read_csv('data/energy/' + task)
|
@@ -242,7 +257,7 @@ def update_all_tasks(sort_order):
|
|
242 |
ascending = True if sort_order == "Low to High" else False
|
243 |
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
244 |
ratio = compute_efficiency_ratio(all_df)
|
245 |
-
callout =
|
246 |
table_html = generate_html_table_from_df(all_df)
|
247 |
return callout, table_html
|
248 |
|
@@ -267,7 +282,7 @@ demo = gr.Blocks(css="""
|
|
267 |
""")
|
268 |
|
269 |
with demo:
|
270 |
-
# --- Header Links
|
271 |
gr.HTML(f'''
|
272 |
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
|
273 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
|
@@ -288,11 +303,10 @@ with demo:
|
|
288 |
</div>
|
289 |
''')
|
290 |
|
291 |
-
# --- Global Callout
|
292 |
global_callout = gr.HTML(get_global_callout())
|
293 |
|
294 |
-
|
295 |
-
gr.Markdown('<div style="text-align: center; margin-top: 10px;">Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.</div>')
|
296 |
|
297 |
# --- Tabs for the different tasks ---
|
298 |
with gr.Tabs():
|
@@ -316,7 +330,6 @@ with demo:
|
|
316 |
)
|
317 |
tg_callout = gr.HTML()
|
318 |
tg_table = gr.HTML()
|
319 |
-
# Set initial values
|
320 |
init_callout, init_table = update_text_generation(model_class_options[0], "Low to High")
|
321 |
tg_callout.value = init_callout
|
322 |
tg_table.value = init_table
|
|
|
69 |
html += '<tbody>'
|
70 |
for _, row in df.iterrows():
|
71 |
energy_numeric = row['gpu_energy_numeric']
|
72 |
+
# Format energy with commas and 2 decimal places.
|
73 |
+
energy_str = f"{energy_numeric:,.2f}"
|
74 |
bar_width = (energy_numeric / max_energy) * 100
|
75 |
score_val = row['energy_score']
|
76 |
bar_color = color_map.get(str(score_val), "gray")
|
|
|
109 |
ratio = max_val / min_val if min_val > 0 else 1
|
110 |
return ratio
|
111 |
|
112 |
+
def generate_callout(ratio, scope_text):
|
113 |
+
"""
|
114 |
+
Returns a right-aligned callout where the inner box is shrink-wrapped to its text.
|
115 |
+
The ratio is formatted with a comma for thousands.
|
116 |
+
"""
|
117 |
+
return (
|
118 |
+
f'<div style="text-align: right;">'
|
119 |
+
f' <div style="display: inline-block; background-color: #f2f2f2; padding: 10px; '
|
120 |
+
f' border-radius: 5px; margin-bottom:10px;">'
|
121 |
+
f' Energy difference of <strong>{ratio:,.1f}x</strong> for {scope_text}.'
|
122 |
+
f' </div>'
|
123 |
+
f'</div>'
|
124 |
+
)
|
125 |
+
|
126 |
def get_global_callout():
|
127 |
all_df = pd.DataFrame()
|
128 |
for task in tasks:
|
|
|
132 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
133 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
134 |
ratio = compute_efficiency_ratio(all_df)
|
135 |
+
return generate_callout(ratio, "all models in leaderboard")
|
136 |
+
|
137 |
+
### ZIP DOWNLOAD FUNCTIONS ###
|
138 |
|
|
|
139 |
def zip_csv_files():
|
140 |
data_dir = "data/energy"
|
141 |
zip_filename = "data.zip"
|
|
|
159 |
)
|
160 |
return href
|
161 |
|
162 |
+
### UPDATE FUNCTIONS (RETURNING CALLOUT AND TABLE HTML) ###
|
163 |
|
164 |
def update_text_generation(selected_display, sort_order):
|
165 |
mapping = {
|
|
|
174 |
return df
|
175 |
df = process_df('text_generation.csv', sort_order, filter_fn)
|
176 |
ratio = compute_efficiency_ratio(df)
|
177 |
+
callout = generate_callout(ratio, "all models in task")
|
178 |
table_html = generate_html_table_from_df(df)
|
179 |
return callout, table_html
|
180 |
|
181 |
def update_image_generation(sort_order):
|
182 |
df = process_df('image_generation.csv', sort_order)
|
183 |
ratio = compute_efficiency_ratio(df)
|
184 |
+
callout = generate_callout(ratio, "all models in task")
|
185 |
table_html = generate_html_table_from_df(df)
|
186 |
return callout, table_html
|
187 |
|
188 |
def update_text_classification(sort_order):
|
189 |
df = process_df('text_classification.csv', sort_order)
|
190 |
ratio = compute_efficiency_ratio(df)
|
191 |
+
callout = generate_callout(ratio, "all models in task")
|
192 |
table_html = generate_html_table_from_df(df)
|
193 |
return callout, table_html
|
194 |
|
195 |
def update_image_classification(sort_order):
|
196 |
df = process_df('image_classification.csv', sort_order)
|
197 |
ratio = compute_efficiency_ratio(df)
|
198 |
+
callout = generate_callout(ratio, "all models in task")
|
199 |
table_html = generate_html_table_from_df(df)
|
200 |
return callout, table_html
|
201 |
|
202 |
def update_image_captioning(sort_order):
|
203 |
df = process_df('image_captioning.csv', sort_order)
|
204 |
ratio = compute_efficiency_ratio(df)
|
205 |
+
callout = generate_callout(ratio, "all models in task")
|
206 |
table_html = generate_html_table_from_df(df)
|
207 |
return callout, table_html
|
208 |
|
209 |
def update_summarization(sort_order):
|
210 |
df = process_df('summarization.csv', sort_order)
|
211 |
ratio = compute_efficiency_ratio(df)
|
212 |
+
callout = generate_callout(ratio, "all models in task")
|
213 |
table_html = generate_html_table_from_df(df)
|
214 |
return callout, table_html
|
215 |
|
216 |
def update_asr(sort_order):
|
217 |
df = process_df('asr.csv', sort_order)
|
218 |
ratio = compute_efficiency_ratio(df)
|
219 |
+
callout = generate_callout(ratio, "all models in task")
|
220 |
table_html = generate_html_table_from_df(df)
|
221 |
return callout, table_html
|
222 |
|
223 |
def update_object_detection(sort_order):
|
224 |
df = process_df('object_detection.csv', sort_order)
|
225 |
ratio = compute_efficiency_ratio(df)
|
226 |
+
callout = generate_callout(ratio, "all models in task")
|
227 |
table_html = generate_html_table_from_df(df)
|
228 |
return callout, table_html
|
229 |
|
230 |
def update_sentence_similarity(sort_order):
|
231 |
df = process_df('sentence_similarity.csv', sort_order)
|
232 |
ratio = compute_efficiency_ratio(df)
|
233 |
+
callout = generate_callout(ratio, "all models in task")
|
234 |
table_html = generate_html_table_from_df(df)
|
235 |
return callout, table_html
|
236 |
|
237 |
def update_extractive_qa(sort_order):
|
238 |
df = process_df('question_answering.csv', sort_order)
|
239 |
ratio = compute_efficiency_ratio(df)
|
240 |
+
callout = generate_callout(ratio, "all models in task")
|
241 |
table_html = generate_html_table_from_df(df)
|
242 |
return callout, table_html
|
243 |
|
244 |
def update_all_tasks(sort_order):
|
|
|
245 |
all_df = pd.DataFrame()
|
246 |
for task in tasks:
|
247 |
df = pd.read_csv('data/energy/' + task)
|
|
|
257 |
ascending = True if sort_order == "Low to High" else False
|
258 |
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
259 |
ratio = compute_efficiency_ratio(all_df)
|
260 |
+
callout = generate_callout(ratio, "all models in leaderboard")
|
261 |
table_html = generate_html_table_from_df(all_df)
|
262 |
return callout, table_html
|
263 |
|
|
|
282 |
""")
|
283 |
|
284 |
with demo:
|
285 |
+
# --- Header Links ---
|
286 |
gr.HTML(f'''
|
287 |
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
|
288 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
|
|
|
303 |
</div>
|
304 |
''')
|
305 |
|
306 |
+
# --- Global Callout ---
|
307 |
global_callout = gr.HTML(get_global_callout())
|
308 |
|
309 |
+
gr.Markdown('<div style="text-align: center; margin-top: 10px;">Select different tasks to see scored models.</div>')
|
|
|
310 |
|
311 |
# --- Tabs for the different tasks ---
|
312 |
with gr.Tabs():
|
|
|
330 |
)
|
331 |
tg_callout = gr.HTML()
|
332 |
tg_table = gr.HTML()
|
|
|
333 |
init_callout, init_table = update_text_generation(model_class_options[0], "Low to High")
|
334 |
tg_callout.value = init_callout
|
335 |
tg_table.value = init_table
|