Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -27,12 +27,13 @@ tasks = [
|
|
27 |
'summarization.csv'
|
28 |
]
|
29 |
|
|
|
|
|
30 |
def format_stars(score):
|
31 |
try:
|
32 |
score_int = int(score)
|
33 |
except Exception:
|
34 |
score_int = 0
|
35 |
-
# Render stars in green with a slightly larger font.
|
36 |
return f'<span style="color: #3fa45bff; font-size:1.5em;">{"β
" * score_int}</span>'
|
37 |
|
38 |
def make_link(mname):
|
@@ -41,7 +42,6 @@ def make_link(mname):
|
|
41 |
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'
|
42 |
|
43 |
def extract_link_text(html_link):
|
44 |
-
"""Extracts the inner text from an HTML link."""
|
45 |
start = html_link.find('>') + 1
|
46 |
end = html_link.rfind('</a>')
|
47 |
if start > 0 and end > start:
|
@@ -50,13 +50,7 @@ def extract_link_text(html_link):
|
|
50 |
return html_link
|
51 |
|
52 |
def generate_html_table_from_df(df):
|
53 |
-
|
54 |
-
Generates an HTML table with four columns:
|
55 |
-
- Model (with link)
|
56 |
-
- Provider (extracted from the model field)
|
57 |
-
- GPU Energy (Wh) plus a horizontal bar
|
58 |
-
- Score (as stars)
|
59 |
-
"""
|
60 |
if not df.empty:
|
61 |
max_length = max(len(extract_link_text(link)) for link in df['Model'])
|
62 |
else:
|
@@ -70,7 +64,7 @@ def generate_html_table_from_df(df):
|
|
70 |
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
|
71 |
html += '<th style="text-align: left; padding: 8px;" title="AI Provider extracted from the model name">Provider</th>'
|
72 |
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
|
73 |
-
html += '<th style="text-align: left; padding: 8px;" title="Energy efficiency score">Score</th>'
|
74 |
html += '</tr></thead>'
|
75 |
html += '<tbody>'
|
76 |
for _, row in df.iterrows():
|
@@ -91,9 +85,30 @@ def generate_html_table_from_df(df):
|
|
91 |
html += '</tbody></table>'
|
92 |
return f'<div class="table-container">{html}</div>'
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
all_df = pd.DataFrame()
|
98 |
for task in tasks:
|
99 |
df = pd.read_csv('data/energy/' + task)
|
@@ -101,41 +116,10 @@ def get_efficiency_diff_for_all():
|
|
101 |
df = df.iloc[:, 1:]
|
102 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
103 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
104 |
-
|
105 |
-
|
106 |
-
min_val = all_df['gpu_energy_numeric'].min()
|
107 |
-
max_val = all_df['gpu_energy_numeric'].max()
|
108 |
-
diff = max_val - min_val
|
109 |
-
# A colorful gradient card for global stats.
|
110 |
-
return (
|
111 |
-
f"<div style='background: linear-gradient(135deg, #f6d365, #fda085); padding: 15px; "
|
112 |
-
f"border-radius: 8px; margin: 10px; color: #333;'>"
|
113 |
-
f"<strong>All Models:</strong> Efficiency difference is <strong>{diff:.2f} Wh</strong> "
|
114 |
-
f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)"
|
115 |
-
f"</div>"
|
116 |
-
)
|
117 |
-
|
118 |
-
def get_efficiency_diff_for_task(task_filename):
|
119 |
-
"""Calculates the efficiency difference for models in a given task."""
|
120 |
-
df = pd.read_csv('data/energy/' + task_filename)
|
121 |
-
if df.columns[0].startswith("Unnamed:"):
|
122 |
-
df = df.iloc[:, 1:]
|
123 |
-
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
124 |
-
if df.empty:
|
125 |
-
return "<div>No data available</div>"
|
126 |
-
min_val = df['gpu_energy_numeric'].min()
|
127 |
-
max_val = df['gpu_energy_numeric'].max()
|
128 |
-
diff = max_val - min_val
|
129 |
-
# A different gradient for the selected task
|
130 |
-
return (
|
131 |
-
f"<div style='background: linear-gradient(135deg, #a8e063, #56ab2f); padding: 15px; "
|
132 |
-
f"border-radius: 8px; margin: 10px; color: #333;'>"
|
133 |
-
f"<strong>Selected Task:</strong> Efficiency difference is <strong>{diff:.2f} Wh</strong> "
|
134 |
-
f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)"
|
135 |
-
f"</div>"
|
136 |
-
)
|
137 |
|
138 |
-
|
139 |
def zip_csv_files():
|
140 |
data_dir = "data/energy"
|
141 |
zip_filename = "data.zip"
|
@@ -159,54 +143,8 @@ def get_zip_data_link():
|
|
159 |
)
|
160 |
return href
|
161 |
|
162 |
-
|
163 |
-
def get_model_names_html(task, sort_order="Low to High"):
|
164 |
-
df = pd.read_csv('data/energy/' + task)
|
165 |
-
if df.columns[0].startswith("Unnamed:"):
|
166 |
-
df = df.iloc[:, 1:]
|
167 |
-
df['energy_score'] = df['energy_score'].astype(int)
|
168 |
-
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
169 |
-
# Add Provider column (text before the slash in the model field)
|
170 |
-
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
171 |
-
df['Model'] = df['model'].apply(make_link)
|
172 |
-
df['Score'] = df['energy_score'].apply(format_stars)
|
173 |
-
ascending = (sort_order == "Low to High")
|
174 |
-
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
175 |
-
return generate_html_table_from_df(df)
|
176 |
-
|
177 |
-
def get_all_model_names_html(sort_order="Low to High"):
|
178 |
-
all_df = pd.DataFrame()
|
179 |
-
for task in tasks:
|
180 |
-
df = pd.read_csv('data/energy/' + task)
|
181 |
-
if df.columns[0].startswith("Unnamed:"):
|
182 |
-
df = df.iloc[:, 1:]
|
183 |
-
df['energy_score'] = df['energy_score'].astype(int)
|
184 |
-
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
185 |
-
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
186 |
-
df['Model'] = df['model'].apply(make_link)
|
187 |
-
df['Score'] = df['energy_score'].apply(format_stars)
|
188 |
-
all_df = pd.concat([all_df, df], ignore_index=True)
|
189 |
-
all_df = all_df.drop_duplicates(subset=['model'])
|
190 |
-
ascending = (sort_order == "Low to High")
|
191 |
-
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
192 |
-
return generate_html_table_from_df(all_df)
|
193 |
-
|
194 |
-
def get_text_generation_model_names_html(model_class, sort_order="Low to High"):
|
195 |
-
df = pd.read_csv('data/energy/text_generation.csv')
|
196 |
-
if df.columns[0].startswith("Unnamed:"):
|
197 |
-
df = df.iloc[:, 1:]
|
198 |
-
if 'class' in df.columns:
|
199 |
-
df = df[df['class'] == model_class]
|
200 |
-
df['energy_score'] = df['energy_score'].astype(int)
|
201 |
-
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
202 |
-
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
203 |
-
df['Model'] = df['model'].apply(make_link)
|
204 |
-
df['Score'] = df['energy_score'].apply(format_stars)
|
205 |
-
ascending = (sort_order == "Low to High")
|
206 |
-
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
207 |
-
return generate_html_table_from_df(df)
|
208 |
|
209 |
-
# --- Update functions for dropdown changes ---
|
210 |
def update_text_generation(selected_display, sort_order):
|
211 |
mapping = {
|
212 |
"A (Single Consumer GPU) <20B parameters": "A",
|
@@ -214,60 +152,102 @@ def update_text_generation(selected_display, sort_order):
|
|
214 |
"C (Multiple Cloud GPUs) >66B parameters": "C"
|
215 |
}
|
216 |
model_class = mapping.get(selected_display, "A")
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
def update_image_generation(sort_order):
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
226 |
|
227 |
def update_text_classification(sort_order):
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
231 |
|
232 |
def update_image_classification(sort_order):
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
236 |
|
237 |
def update_image_captioning(sort_order):
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
241 |
|
242 |
def update_summarization(sort_order):
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
246 |
|
247 |
def update_asr(sort_order):
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
251 |
|
252 |
def update_object_detection(sort_order):
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
256 |
|
257 |
def update_sentence_similarity(sort_order):
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
261 |
|
262 |
def update_extractive_qa(sort_order):
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
266 |
|
267 |
def update_all_tasks(sort_order):
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
-
# --- Build the Gradio Interface ---
|
271 |
demo = gr.Blocks(css="""
|
272 |
.gr-dataframe table {
|
273 |
table-layout: fixed;
|
@@ -287,7 +267,7 @@ demo = gr.Blocks(css="""
|
|
287 |
""")
|
288 |
|
289 |
with demo:
|
290 |
-
# --- Header Links ---
|
291 |
gr.HTML(f'''
|
292 |
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
|
293 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
|
@@ -299,23 +279,22 @@ with demo:
|
|
299 |
</div>
|
300 |
''')
|
301 |
|
302 |
-
# --- Logo
|
303 |
gr.HTML('''
|
304 |
-
<div style="
|
305 |
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
|
306 |
alt="Logo"
|
307 |
-
style="max-width: 300px; height: auto;
|
308 |
</div>
|
309 |
''')
|
310 |
-
gr.Markdown('<div style="text-align: center; font-size: 1.2em;">Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.</div>')
|
311 |
-
|
312 |
-
# --- Callout Cards (Row at the Top) ---
|
313 |
-
with gr.Row():
|
314 |
-
all_models_card = gr.HTML(get_efficiency_diff_for_all())
|
315 |
-
# Initially, we show the stats for text_generation as default for the selected task.
|
316 |
-
selected_task_card = gr.HTML(get_efficiency_diff_for_task('text_generation.csv'))
|
317 |
|
318 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
with gr.Tabs():
|
320 |
# --- Text Generation Tab ---
|
321 |
with gr.TabItem("Text Generation π¬"):
|
@@ -335,18 +314,14 @@ with demo:
|
|
335 |
label="Sort",
|
336 |
value="Low to High"
|
337 |
)
|
338 |
-
|
339 |
-
tg_table = gr.HTML(
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
)
|
345 |
-
sort_dropdown_tg.change(
|
346 |
-
fn=update_text_generation,
|
347 |
-
inputs=[model_class_dropdown, sort_dropdown_tg],
|
348 |
-
outputs=[tg_table, selected_task_card]
|
349 |
-
)
|
350 |
|
351 |
# --- Image Generation Tab ---
|
352 |
with gr.TabItem("Image Generation π·"):
|
@@ -355,12 +330,12 @@ with demo:
|
|
355 |
label="Sort",
|
356 |
value="Low to High"
|
357 |
)
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
)
|
364 |
|
365 |
# --- Text Classification Tab ---
|
366 |
with gr.TabItem("Text Classification π"):
|
@@ -369,12 +344,12 @@ with demo:
|
|
369 |
label="Sort",
|
370 |
value="Low to High"
|
371 |
)
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
)
|
378 |
|
379 |
# --- Image Classification Tab ---
|
380 |
with gr.TabItem("Image Classification πΌοΈ"):
|
@@ -383,12 +358,12 @@ with demo:
|
|
383 |
label="Sort",
|
384 |
value="Low to High"
|
385 |
)
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
)
|
392 |
|
393 |
# --- Image Captioning Tab ---
|
394 |
with gr.TabItem("Image Captioning π"):
|
@@ -397,12 +372,12 @@ with demo:
|
|
397 |
label="Sort",
|
398 |
value="Low to High"
|
399 |
)
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
)
|
406 |
|
407 |
# --- Summarization Tab ---
|
408 |
with gr.TabItem("Summarization π"):
|
@@ -411,12 +386,12 @@ with demo:
|
|
411 |
label="Sort",
|
412 |
value="Low to High"
|
413 |
)
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
)
|
420 |
|
421 |
# --- Automatic Speech Recognition Tab ---
|
422 |
with gr.TabItem("Automatic Speech Recognition π¬"):
|
@@ -425,12 +400,12 @@ with demo:
|
|
425 |
label="Sort",
|
426 |
value="Low to High"
|
427 |
)
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
)
|
434 |
|
435 |
# --- Object Detection Tab ---
|
436 |
with gr.TabItem("Object Detection π"):
|
@@ -439,12 +414,12 @@ with demo:
|
|
439 |
label="Sort",
|
440 |
value="Low to High"
|
441 |
)
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
)
|
448 |
|
449 |
# --- Sentence Similarity Tab ---
|
450 |
with gr.TabItem("Sentence Similarity π"):
|
@@ -453,12 +428,12 @@ with demo:
|
|
453 |
label="Sort",
|
454 |
value="Low to High"
|
455 |
)
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
)
|
462 |
|
463 |
# --- Extractive QA Tab ---
|
464 |
with gr.TabItem("Extractive QA β"):
|
@@ -467,22 +442,26 @@ with demo:
|
|
467 |
label="Sort",
|
468 |
value="Low to High"
|
469 |
)
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
)
|
476 |
|
477 |
-
# --- All Tasks Tab
|
478 |
with gr.TabItem("All Tasks π‘"):
|
479 |
sort_dropdown_all = gr.Dropdown(
|
480 |
choices=["Low to High", "High to Low"],
|
481 |
label="Sort",
|
482 |
value="Low to High"
|
483 |
)
|
484 |
-
|
485 |
-
|
|
|
|
|
|
|
|
|
486 |
|
487 |
with gr.Accordion("π Citation", open=False):
|
488 |
citation_button = gr.Textbox(
|
|
|
27 |
'summarization.csv'
|
28 |
]
|
29 |
|
30 |
+
### HELPER FUNCTIONS ###
|
31 |
+
|
32 |
def format_stars(score):
|
33 |
try:
|
34 |
score_int = int(score)
|
35 |
except Exception:
|
36 |
score_int = 0
|
|
|
37 |
return f'<span style="color: #3fa45bff; font-size:1.5em;">{"β
" * score_int}</span>'
|
38 |
|
39 |
def make_link(mname):
|
|
|
42 |
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'
|
43 |
|
44 |
def extract_link_text(html_link):
|
|
|
45 |
start = html_link.find('>') + 1
|
46 |
end = html_link.rfind('</a>')
|
47 |
if start > 0 and end > start:
|
|
|
50 |
return html_link
|
51 |
|
52 |
def generate_html_table_from_df(df):
|
53 |
+
# Compute a static width for the Model column based on the longest model name.
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if not df.empty:
|
55 |
max_length = max(len(extract_link_text(link)) for link in df['Model'])
|
56 |
else:
|
|
|
64 |
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
|
65 |
html += '<th style="text-align: left; padding: 8px;" title="AI Provider extracted from the model name">Provider</th>'
|
66 |
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
|
67 |
+
html += '<th style="text-align: left; padding: 8px;" title="Energy efficiency score (stars)">Score</th>'
|
68 |
html += '</tr></thead>'
|
69 |
html += '<tbody>'
|
70 |
for _, row in df.iterrows():
|
|
|
85 |
html += '</tbody></table>'
|
86 |
return f'<div class="table-container">{html}</div>'
|
87 |
|
88 |
+
def process_df(task, sort_order="Low to High", filter_fn=None):
|
89 |
+
df = pd.read_csv('data/energy/' + task)
|
90 |
+
if df.columns[0].startswith("Unnamed:"):
|
91 |
+
df = df.iloc[:, 1:]
|
92 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
93 |
+
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
94 |
+
if filter_fn is not None:
|
95 |
+
df = filter_fn(df)
|
96 |
+
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
97 |
+
df['Model'] = df['model'].apply(make_link)
|
98 |
+
df['Score'] = df['energy_score'].apply(format_stars)
|
99 |
+
ascending = True if sort_order == "Low to High" else False
|
100 |
+
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
101 |
+
return df
|
102 |
+
|
103 |
+
def compute_efficiency_ratio(df):
|
104 |
+
if df.empty:
|
105 |
+
return 1
|
106 |
+
min_val = df['gpu_energy_numeric'].min()
|
107 |
+
max_val = df['gpu_energy_numeric'].max()
|
108 |
+
ratio = max_val / min_val if min_val > 0 else 1
|
109 |
+
return ratio
|
110 |
+
|
111 |
+
def get_global_callout():
|
112 |
all_df = pd.DataFrame()
|
113 |
for task in tasks:
|
114 |
df = pd.read_csv('data/energy/' + task)
|
|
|
116 |
df = df.iloc[:, 1:]
|
117 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
118 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
119 |
+
ratio = compute_efficiency_ratio(all_df)
|
120 |
+
return f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in leaderboard.</div>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
### ZIP DOWNLOAD (unchanged) ###
|
123 |
def zip_csv_files():
|
124 |
data_dir = "data/energy"
|
125 |
zip_filename = "data.zip"
|
|
|
143 |
)
|
144 |
return href
|
145 |
|
146 |
+
### UPDATE FUNCTIONS FOR TASKS (returning both callout and table) ###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
|
|
148 |
def update_text_generation(selected_display, sort_order):
|
149 |
mapping = {
|
150 |
"A (Single Consumer GPU) <20B parameters": "A",
|
|
|
152 |
"C (Multiple Cloud GPUs) >66B parameters": "C"
|
153 |
}
|
154 |
model_class = mapping.get(selected_display, "A")
|
155 |
+
def filter_fn(df):
|
156 |
+
if 'class' in df.columns:
|
157 |
+
return df[df['class'] == model_class]
|
158 |
+
return df
|
159 |
+
df = process_df('text_generation.csv', sort_order, filter_fn)
|
160 |
+
ratio = compute_efficiency_ratio(df)
|
161 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
162 |
+
table_html = generate_html_table_from_df(df)
|
163 |
+
return callout, table_html
|
164 |
|
165 |
def update_image_generation(sort_order):
|
166 |
+
df = process_df('image_generation.csv', sort_order)
|
167 |
+
ratio = compute_efficiency_ratio(df)
|
168 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
169 |
+
table_html = generate_html_table_from_df(df)
|
170 |
+
return callout, table_html
|
171 |
|
172 |
def update_text_classification(sort_order):
|
173 |
+
df = process_df('text_classification.csv', sort_order)
|
174 |
+
ratio = compute_efficiency_ratio(df)
|
175 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
176 |
+
table_html = generate_html_table_from_df(df)
|
177 |
+
return callout, table_html
|
178 |
|
179 |
def update_image_classification(sort_order):
|
180 |
+
df = process_df('image_classification.csv', sort_order)
|
181 |
+
ratio = compute_efficiency_ratio(df)
|
182 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
183 |
+
table_html = generate_html_table_from_df(df)
|
184 |
+
return callout, table_html
|
185 |
|
186 |
def update_image_captioning(sort_order):
|
187 |
+
df = process_df('image_captioning.csv', sort_order)
|
188 |
+
ratio = compute_efficiency_ratio(df)
|
189 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
190 |
+
table_html = generate_html_table_from_df(df)
|
191 |
+
return callout, table_html
|
192 |
|
193 |
def update_summarization(sort_order):
|
194 |
+
df = process_df('summarization.csv', sort_order)
|
195 |
+
ratio = compute_efficiency_ratio(df)
|
196 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
197 |
+
table_html = generate_html_table_from_df(df)
|
198 |
+
return callout, table_html
|
199 |
|
200 |
def update_asr(sort_order):
|
201 |
+
df = process_df('asr.csv', sort_order)
|
202 |
+
ratio = compute_efficiency_ratio(df)
|
203 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
204 |
+
table_html = generate_html_table_from_df(df)
|
205 |
+
return callout, table_html
|
206 |
|
207 |
def update_object_detection(sort_order):
|
208 |
+
df = process_df('object_detection.csv', sort_order)
|
209 |
+
ratio = compute_efficiency_ratio(df)
|
210 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
211 |
+
table_html = generate_html_table_from_df(df)
|
212 |
+
return callout, table_html
|
213 |
|
214 |
def update_sentence_similarity(sort_order):
|
215 |
+
df = process_df('sentence_similarity.csv', sort_order)
|
216 |
+
ratio = compute_efficiency_ratio(df)
|
217 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
218 |
+
table_html = generate_html_table_from_df(df)
|
219 |
+
return callout, table_html
|
220 |
|
221 |
def update_extractive_qa(sort_order):
|
222 |
+
df = process_df('question_answering.csv', sort_order)
|
223 |
+
ratio = compute_efficiency_ratio(df)
|
224 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
225 |
+
table_html = generate_html_table_from_df(df)
|
226 |
+
return callout, table_html
|
227 |
|
228 |
def update_all_tasks(sort_order):
|
229 |
+
# Process all CSV files together
|
230 |
+
all_df = pd.DataFrame()
|
231 |
+
for task in tasks:
|
232 |
+
df = pd.read_csv('data/energy/' + task)
|
233 |
+
if df.columns[0].startswith("Unnamed:"):
|
234 |
+
df = df.iloc[:, 1:]
|
235 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
236 |
+
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
237 |
+
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
238 |
+
df['Model'] = df['model'].apply(make_link)
|
239 |
+
df['Score'] = df['energy_score'].apply(format_stars)
|
240 |
+
all_df = pd.concat([all_df, df], ignore_index=True)
|
241 |
+
all_df = all_df.drop_duplicates(subset=['model'])
|
242 |
+
ascending = True if sort_order == "Low to High" else False
|
243 |
+
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
244 |
+
ratio = compute_efficiency_ratio(all_df)
|
245 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in leaderboard.</div>'
|
246 |
+
table_html = generate_html_table_from_df(all_df)
|
247 |
+
return callout, table_html
|
248 |
+
|
249 |
+
### BUILD THE GRADIO INTERFACE ###
|
250 |
|
|
|
251 |
demo = gr.Blocks(css="""
|
252 |
.gr-dataframe table {
|
253 |
table-layout: fixed;
|
|
|
267 |
""")
|
268 |
|
269 |
with demo:
|
270 |
+
# --- Header Links (evenly spaced) ---
|
271 |
gr.HTML(f'''
|
272 |
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
|
273 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
|
|
|
279 |
</div>
|
280 |
''')
|
281 |
|
282 |
+
# --- Centered Logo ---
|
283 |
gr.HTML('''
|
284 |
+
<div style="text-align: center; margin-top: 0px;">
|
285 |
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
|
286 |
alt="Logo"
|
287 |
+
style="display: inline-block; max-width: 300px; height: auto;">
|
288 |
</div>
|
289 |
''')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
+
# --- Global Callout (for all models in leaderboard) ---
|
292 |
+
global_callout = gr.HTML(get_global_callout())
|
293 |
+
|
294 |
+
# --- Welcome Text (moved below the callouts) ---
|
295 |
+
gr.Markdown('<div style="text-align: center; margin-top: 10px;">Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.</div>')
|
296 |
+
|
297 |
+
# --- Tabs for the different tasks ---
|
298 |
with gr.Tabs():
|
299 |
# --- Text Generation Tab ---
|
300 |
with gr.TabItem("Text Generation π¬"):
|
|
|
314 |
label="Sort",
|
315 |
value="Low to High"
|
316 |
)
|
317 |
+
tg_callout = gr.HTML()
|
318 |
+
tg_table = gr.HTML()
|
319 |
+
# Set initial values
|
320 |
+
init_callout, init_table = update_text_generation(model_class_options[0], "Low to High")
|
321 |
+
tg_callout.value = init_callout
|
322 |
+
tg_table.value = init_table
|
323 |
+
model_class_dropdown.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=[tg_callout, tg_table])
|
324 |
+
sort_dropdown_tg.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=[tg_callout, tg_table])
|
|
|
|
|
|
|
|
|
325 |
|
326 |
# --- Image Generation Tab ---
|
327 |
with gr.TabItem("Image Generation π·"):
|
|
|
330 |
label="Sort",
|
331 |
value="Low to High"
|
332 |
)
|
333 |
+
img_callout = gr.HTML()
|
334 |
+
img_table = gr.HTML()
|
335 |
+
init_callout, init_table = update_image_generation("Low to High")
|
336 |
+
img_callout.value = init_callout
|
337 |
+
img_table.value = init_table
|
338 |
+
sort_dropdown_img.change(fn=update_image_generation, inputs=sort_dropdown_img, outputs=[img_callout, img_table])
|
339 |
|
340 |
# --- Text Classification Tab ---
|
341 |
with gr.TabItem("Text Classification π"):
|
|
|
344 |
label="Sort",
|
345 |
value="Low to High"
|
346 |
)
|
347 |
+
tc_callout = gr.HTML()
|
348 |
+
tc_table = gr.HTML()
|
349 |
+
init_callout, init_table = update_text_classification("Low to High")
|
350 |
+
tc_callout.value = init_callout
|
351 |
+
tc_table.value = init_table
|
352 |
+
sort_dropdown_tc.change(fn=update_text_classification, inputs=sort_dropdown_tc, outputs=[tc_callout, tc_table])
|
353 |
|
354 |
# --- Image Classification Tab ---
|
355 |
with gr.TabItem("Image Classification πΌοΈ"):
|
|
|
358 |
label="Sort",
|
359 |
value="Low to High"
|
360 |
)
|
361 |
+
ic_callout = gr.HTML()
|
362 |
+
ic_table = gr.HTML()
|
363 |
+
init_callout, init_table = update_image_classification("Low to High")
|
364 |
+
ic_callout.value = init_callout
|
365 |
+
ic_table.value = init_table
|
366 |
+
sort_dropdown_ic.change(fn=update_image_classification, inputs=sort_dropdown_ic, outputs=[ic_callout, ic_table])
|
367 |
|
368 |
# --- Image Captioning Tab ---
|
369 |
with gr.TabItem("Image Captioning π"):
|
|
|
372 |
label="Sort",
|
373 |
value="Low to High"
|
374 |
)
|
375 |
+
icap_callout = gr.HTML()
|
376 |
+
icap_table = gr.HTML()
|
377 |
+
init_callout, init_table = update_image_captioning("Low to High")
|
378 |
+
icap_callout.value = init_callout
|
379 |
+
icap_table.value = init_table
|
380 |
+
sort_dropdown_icap.change(fn=update_image_captioning, inputs=sort_dropdown_icap, outputs=[icap_callout, icap_table])
|
381 |
|
382 |
# --- Summarization Tab ---
|
383 |
with gr.TabItem("Summarization π"):
|
|
|
386 |
label="Sort",
|
387 |
value="Low to High"
|
388 |
)
|
389 |
+
sum_callout = gr.HTML()
|
390 |
+
sum_table = gr.HTML()
|
391 |
+
init_callout, init_table = update_summarization("Low to High")
|
392 |
+
sum_callout.value = init_callout
|
393 |
+
sum_table.value = init_table
|
394 |
+
sort_dropdown_sum.change(fn=update_summarization, inputs=sort_dropdown_sum, outputs=[sum_callout, sum_table])
|
395 |
|
396 |
# --- Automatic Speech Recognition Tab ---
|
397 |
with gr.TabItem("Automatic Speech Recognition π¬"):
|
|
|
400 |
label="Sort",
|
401 |
value="Low to High"
|
402 |
)
|
403 |
+
asr_callout = gr.HTML()
|
404 |
+
asr_table = gr.HTML()
|
405 |
+
init_callout, init_table = update_asr("Low to High")
|
406 |
+
asr_callout.value = init_callout
|
407 |
+
asr_table.value = init_table
|
408 |
+
sort_dropdown_asr.change(fn=update_asr, inputs=sort_dropdown_asr, outputs=[asr_callout, asr_table])
|
409 |
|
410 |
# --- Object Detection Tab ---
|
411 |
with gr.TabItem("Object Detection π"):
|
|
|
414 |
label="Sort",
|
415 |
value="Low to High"
|
416 |
)
|
417 |
+
od_callout = gr.HTML()
|
418 |
+
od_table = gr.HTML()
|
419 |
+
init_callout, init_table = update_object_detection("Low to High")
|
420 |
+
od_callout.value = init_callout
|
421 |
+
od_table.value = init_table
|
422 |
+
sort_dropdown_od.change(fn=update_object_detection, inputs=sort_dropdown_od, outputs=[od_callout, od_table])
|
423 |
|
424 |
# --- Sentence Similarity Tab ---
|
425 |
with gr.TabItem("Sentence Similarity π"):
|
|
|
428 |
label="Sort",
|
429 |
value="Low to High"
|
430 |
)
|
431 |
+
ss_callout = gr.HTML()
|
432 |
+
ss_table = gr.HTML()
|
433 |
+
init_callout, init_table = update_sentence_similarity("Low to High")
|
434 |
+
ss_callout.value = init_callout
|
435 |
+
ss_table.value = init_table
|
436 |
+
sort_dropdown_ss.change(fn=update_sentence_similarity, inputs=sort_dropdown_ss, outputs=[ss_callout, ss_table])
|
437 |
|
438 |
# --- Extractive QA Tab ---
|
439 |
with gr.TabItem("Extractive QA β"):
|
|
|
442 |
label="Sort",
|
443 |
value="Low to High"
|
444 |
)
|
445 |
+
qa_callout = gr.HTML()
|
446 |
+
qa_table = gr.HTML()
|
447 |
+
init_callout, init_table = update_extractive_qa("Low to High")
|
448 |
+
qa_callout.value = init_callout
|
449 |
+
qa_table.value = init_table
|
450 |
+
sort_dropdown_qa.change(fn=update_extractive_qa, inputs=sort_dropdown_qa, outputs=[qa_callout, qa_table])
|
451 |
|
452 |
+
# --- All Tasks Tab ---
|
453 |
with gr.TabItem("All Tasks π‘"):
|
454 |
sort_dropdown_all = gr.Dropdown(
|
455 |
choices=["Low to High", "High to Low"],
|
456 |
label="Sort",
|
457 |
value="Low to High"
|
458 |
)
|
459 |
+
all_callout = gr.HTML()
|
460 |
+
all_table = gr.HTML()
|
461 |
+
init_callout, init_table = update_all_tasks("Low to High")
|
462 |
+
all_callout.value = init_callout
|
463 |
+
all_table.value = init_table
|
464 |
+
sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=[all_callout, all_table])
|
465 |
|
466 |
with gr.Accordion("π Citation", open=False):
|
467 |
citation_button = gr.Textbox(
|