Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -32,7 +32,7 @@ def format_stars(score):
|
|
32 |
score_int = int(score)
|
33 |
except Exception:
|
34 |
score_int = 0
|
35 |
-
# Render stars in
|
36 |
return f'<span style="color: #3fa45bff; font-size:1.5em;">{"β
" * score_int}</span>'
|
37 |
|
38 |
def make_link(mname):
|
@@ -51,15 +51,12 @@ def extract_link_text(html_link):
|
|
51 |
|
52 |
def generate_html_table_from_df(df):
|
53 |
"""
|
54 |
-
|
55 |
-
|
56 |
-
- Model (the link, with a fixed width based on the longest model name)
|
57 |
- Provider (extracted from the model field)
|
58 |
-
- GPU Energy (Wh) plus a horizontal bar
|
59 |
-
|
60 |
-
- Score (displayed as stars)
|
61 |
"""
|
62 |
-
# Compute a static width (in pixels) for the Model column based on the longest model name.
|
63 |
if not df.empty:
|
64 |
max_length = max(len(extract_link_text(link)) for link in df['Model'])
|
65 |
else:
|
@@ -73,7 +70,7 @@ def generate_html_table_from_df(df):
|
|
73 |
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
|
74 |
html += '<th style="text-align: left; padding: 8px;" title="AI Provider extracted from the model name">Provider</th>'
|
75 |
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
|
76 |
-
html += '<th style="text-align: left; padding: 8px;" title="
|
77 |
html += '</tr></thead>'
|
78 |
html += '<tbody>'
|
79 |
for _, row in df.iterrows():
|
@@ -92,10 +89,53 @@ def generate_html_table_from_df(df):
|
|
92 |
html += f'<td style="padding: 8px;">{row["Score"]}</td>'
|
93 |
html += '</tr>'
|
94 |
html += '</tbody></table>'
|
95 |
-
# Wrap the table in a container so its edges match the dropdown menus.
|
96 |
return f'<div class="table-container">{html}</div>'
|
97 |
|
98 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def zip_csv_files():
|
100 |
data_dir = "data/energy"
|
101 |
zip_filename = "data.zip"
|
@@ -107,7 +147,6 @@ def zip_csv_files():
|
|
107 |
return zip_filename
|
108 |
|
109 |
def get_zip_data_link():
|
110 |
-
"""Creates a data URI download link for the ZIP file."""
|
111 |
zip_filename = zip_csv_files()
|
112 |
with open(zip_filename, "rb") as f:
|
113 |
data = f.read()
|
@@ -127,11 +166,11 @@ def get_model_names_html(task, sort_order="Low to High"):
|
|
127 |
df = df.iloc[:, 1:]
|
128 |
df['energy_score'] = df['energy_score'].astype(int)
|
129 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
130 |
-
# Add
|
131 |
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
132 |
df['Model'] = df['model'].apply(make_link)
|
133 |
df['Score'] = df['energy_score'].apply(format_stars)
|
134 |
-
ascending =
|
135 |
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
136 |
return generate_html_table_from_df(df)
|
137 |
|
@@ -143,13 +182,12 @@ def get_all_model_names_html(sort_order="Low to High"):
|
|
143 |
df = df.iloc[:, 1:]
|
144 |
df['energy_score'] = df['energy_score'].astype(int)
|
145 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
146 |
-
# Add the Provider column here as well.
|
147 |
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
148 |
df['Model'] = df['model'].apply(make_link)
|
149 |
df['Score'] = df['energy_score'].apply(format_stars)
|
150 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
151 |
all_df = all_df.drop_duplicates(subset=['model'])
|
152 |
-
ascending =
|
153 |
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
154 |
return generate_html_table_from_df(all_df)
|
155 |
|
@@ -161,11 +199,10 @@ def get_text_generation_model_names_html(model_class, sort_order="Low to High"):
|
|
161 |
df = df[df['class'] == model_class]
|
162 |
df['energy_score'] = df['energy_score'].astype(int)
|
163 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
164 |
-
# Add the Provider column here as well.
|
165 |
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
166 |
df['Model'] = df['model'].apply(make_link)
|
167 |
df['Score'] = df['energy_score'].apply(format_stars)
|
168 |
-
ascending =
|
169 |
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
170 |
return generate_html_table_from_df(df)
|
171 |
|
@@ -177,34 +214,55 @@ def update_text_generation(selected_display, sort_order):
|
|
177 |
"C (Multiple Cloud GPUs) >66B parameters": "C"
|
178 |
}
|
179 |
model_class = mapping.get(selected_display, "A")
|
180 |
-
|
|
|
|
|
|
|
181 |
|
182 |
def update_image_generation(sort_order):
|
183 |
-
|
|
|
|
|
184 |
|
185 |
def update_text_classification(sort_order):
|
186 |
-
|
|
|
|
|
187 |
|
188 |
def update_image_classification(sort_order):
|
189 |
-
|
|
|
|
|
190 |
|
191 |
def update_image_captioning(sort_order):
|
192 |
-
|
|
|
|
|
193 |
|
194 |
def update_summarization(sort_order):
|
195 |
-
|
|
|
|
|
196 |
|
197 |
def update_asr(sort_order):
|
198 |
-
|
|
|
|
|
199 |
|
200 |
def update_object_detection(sort_order):
|
201 |
-
|
|
|
|
|
202 |
|
203 |
def update_sentence_similarity(sort_order):
|
204 |
-
|
|
|
|
|
205 |
|
206 |
def update_extractive_qa(sort_order):
|
207 |
-
|
|
|
|
|
208 |
|
209 |
def update_all_tasks(sort_order):
|
210 |
return get_all_model_names_html(sort_order)
|
@@ -229,7 +287,7 @@ demo = gr.Blocks(css="""
|
|
229 |
""")
|
230 |
|
231 |
with demo:
|
232 |
-
# --- Header Links
|
233 |
gr.HTML(f'''
|
234 |
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
|
235 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
|
@@ -238,19 +296,26 @@ with demo:
|
|
238 |
<a href="https://huggingface.github.io/AIEnergyScore/#documentation" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Documentation</a>
|
239 |
{get_zip_data_link()}
|
240 |
<a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Community</a>
|
|
|
241 |
''')
|
242 |
|
243 |
-
# --- Logo
|
244 |
gr.HTML('''
|
245 |
-
<div style="margin-top: 0px;">
|
246 |
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
|
247 |
alt="Logo"
|
248 |
-
style="
|
|
|
249 |
''')
|
250 |
-
|
251 |
-
gr.Markdown('<div style="text-align: center;">Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.</div>')
|
252 |
|
253 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
with gr.Tabs():
|
255 |
# --- Text Generation Tab ---
|
256 |
with gr.TabItem("Text Generation π¬"):
|
@@ -270,9 +335,18 @@ with demo:
|
|
270 |
label="Sort",
|
271 |
value="Low to High"
|
272 |
)
|
|
|
273 |
tg_table = gr.HTML(get_text_generation_model_names_html("A", "Low to High"))
|
274 |
-
model_class_dropdown.change(
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
# --- Image Generation Tab ---
|
278 |
with gr.TabItem("Image Generation π·"):
|
@@ -282,7 +356,11 @@ with demo:
|
|
282 |
value="Low to High"
|
283 |
)
|
284 |
img_table = gr.HTML(get_model_names_html('image_generation.csv', "Low to High"))
|
285 |
-
sort_dropdown_img.change(
|
|
|
|
|
|
|
|
|
286 |
|
287 |
# --- Text Classification Tab ---
|
288 |
with gr.TabItem("Text Classification π"):
|
@@ -292,7 +370,11 @@ with demo:
|
|
292 |
value="Low to High"
|
293 |
)
|
294 |
tc_table = gr.HTML(get_model_names_html('text_classification.csv', "Low to High"))
|
295 |
-
sort_dropdown_tc.change(
|
|
|
|
|
|
|
|
|
296 |
|
297 |
# --- Image Classification Tab ---
|
298 |
with gr.TabItem("Image Classification πΌοΈ"):
|
@@ -302,7 +384,11 @@ with demo:
|
|
302 |
value="Low to High"
|
303 |
)
|
304 |
ic_table = gr.HTML(get_model_names_html('image_classification.csv', "Low to High"))
|
305 |
-
sort_dropdown_ic.change(
|
|
|
|
|
|
|
|
|
306 |
|
307 |
# --- Image Captioning Tab ---
|
308 |
with gr.TabItem("Image Captioning π"):
|
@@ -312,7 +398,11 @@ with demo:
|
|
312 |
value="Low to High"
|
313 |
)
|
314 |
icap_table = gr.HTML(get_model_names_html('image_captioning.csv', "Low to High"))
|
315 |
-
sort_dropdown_icap.change(
|
|
|
|
|
|
|
|
|
316 |
|
317 |
# --- Summarization Tab ---
|
318 |
with gr.TabItem("Summarization π"):
|
@@ -322,7 +412,11 @@ with demo:
|
|
322 |
value="Low to High"
|
323 |
)
|
324 |
sum_table = gr.HTML(get_model_names_html('summarization.csv', "Low to High"))
|
325 |
-
sort_dropdown_sum.change(
|
|
|
|
|
|
|
|
|
326 |
|
327 |
# --- Automatic Speech Recognition Tab ---
|
328 |
with gr.TabItem("Automatic Speech Recognition π¬"):
|
@@ -332,7 +426,11 @@ with demo:
|
|
332 |
value="Low to High"
|
333 |
)
|
334 |
asr_table = gr.HTML(get_model_names_html('asr.csv', "Low to High"))
|
335 |
-
sort_dropdown_asr.change(
|
|
|
|
|
|
|
|
|
336 |
|
337 |
# --- Object Detection Tab ---
|
338 |
with gr.TabItem("Object Detection π"):
|
@@ -342,7 +440,11 @@ with demo:
|
|
342 |
value="Low to High"
|
343 |
)
|
344 |
od_table = gr.HTML(get_model_names_html('object_detection.csv', "Low to High"))
|
345 |
-
sort_dropdown_od.change(
|
|
|
|
|
|
|
|
|
346 |
|
347 |
# --- Sentence Similarity Tab ---
|
348 |
with gr.TabItem("Sentence Similarity π"):
|
@@ -352,7 +454,11 @@ with demo:
|
|
352 |
value="Low to High"
|
353 |
)
|
354 |
ss_table = gr.HTML(get_model_names_html('sentence_similarity.csv', "Low to High"))
|
355 |
-
sort_dropdown_ss.change(
|
|
|
|
|
|
|
|
|
356 |
|
357 |
# --- Extractive QA Tab ---
|
358 |
with gr.TabItem("Extractive QA β"):
|
@@ -362,9 +468,13 @@ with demo:
|
|
362 |
value="Low to High"
|
363 |
)
|
364 |
qa_table = gr.HTML(get_model_names_html('question_answering.csv', "Low to High"))
|
365 |
-
sort_dropdown_qa.change(
|
|
|
|
|
|
|
|
|
366 |
|
367 |
-
# --- All Tasks Tab ---
|
368 |
with gr.TabItem("All Tasks π‘"):
|
369 |
sort_dropdown_all = gr.Dropdown(
|
370 |
choices=["Low to High", "High to Low"],
|
|
|
32 |
score_int = int(score)
|
33 |
except Exception:
|
34 |
score_int = 0
|
35 |
+
# Render stars in green with a slightly larger font.
|
36 |
return f'<span style="color: #3fa45bff; font-size:1.5em;">{"β
" * score_int}</span>'
|
37 |
|
38 |
def make_link(mname):
|
|
|
51 |
|
52 |
def generate_html_table_from_df(df):
|
53 |
"""
|
54 |
+
Generates an HTML table with four columns:
|
55 |
+
- Model (with link)
|
|
|
56 |
- Provider (extracted from the model field)
|
57 |
+
- GPU Energy (Wh) plus a horizontal bar
|
58 |
+
- Score (as stars)
|
|
|
59 |
"""
|
|
|
60 |
if not df.empty:
|
61 |
max_length = max(len(extract_link_text(link)) for link in df['Model'])
|
62 |
else:
|
|
|
70 |
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
|
71 |
html += '<th style="text-align: left; padding: 8px;" title="AI Provider extracted from the model name">Provider</th>'
|
72 |
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
|
73 |
+
html += '<th style="text-align: left; padding: 8px;" title="Energy efficiency score">Score</th>'
|
74 |
html += '</tr></thead>'
|
75 |
html += '<tbody>'
|
76 |
for _, row in df.iterrows():
|
|
|
89 |
html += f'<td style="padding: 8px;">{row["Score"]}</td>'
|
90 |
html += '</tr>'
|
91 |
html += '</tbody></table>'
|
|
|
92 |
return f'<div class="table-container">{html}</div>'
|
93 |
|
94 |
+
# --- Functions for creating the efficiency difference callout cards ---
|
95 |
+
def get_efficiency_diff_for_all():
|
96 |
+
"""Calculates the efficiency difference across all models."""
|
97 |
+
all_df = pd.DataFrame()
|
98 |
+
for task in tasks:
|
99 |
+
df = pd.read_csv('data/energy/' + task)
|
100 |
+
if df.columns[0].startswith("Unnamed:"):
|
101 |
+
df = df.iloc[:, 1:]
|
102 |
+
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
103 |
+
all_df = pd.concat([all_df, df], ignore_index=True)
|
104 |
+
if all_df.empty:
|
105 |
+
return "<div>No data available</div>"
|
106 |
+
min_val = all_df['gpu_energy_numeric'].min()
|
107 |
+
max_val = all_df['gpu_energy_numeric'].max()
|
108 |
+
diff = max_val - min_val
|
109 |
+
# A colorful gradient card for global stats.
|
110 |
+
return (
|
111 |
+
f"<div style='background: linear-gradient(135deg, #f6d365, #fda085); padding: 15px; "
|
112 |
+
f"border-radius: 8px; margin: 10px; color: #333;'>"
|
113 |
+
f"<strong>All Models:</strong> Efficiency difference is <strong>{diff:.2f} Wh</strong> "
|
114 |
+
f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)"
|
115 |
+
f"</div>"
|
116 |
+
)
|
117 |
+
|
118 |
+
def get_efficiency_diff_for_task(task_filename):
|
119 |
+
"""Calculates the efficiency difference for models in a given task."""
|
120 |
+
df = pd.read_csv('data/energy/' + task_filename)
|
121 |
+
if df.columns[0].startswith("Unnamed:"):
|
122 |
+
df = df.iloc[:, 1:]
|
123 |
+
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
124 |
+
if df.empty:
|
125 |
+
return "<div>No data available</div>"
|
126 |
+
min_val = df['gpu_energy_numeric'].min()
|
127 |
+
max_val = df['gpu_energy_numeric'].max()
|
128 |
+
diff = max_val - min_val
|
129 |
+
# A different gradient for the selected task
|
130 |
+
return (
|
131 |
+
f"<div style='background: linear-gradient(135deg, #a8e063, #56ab2f); padding: 15px; "
|
132 |
+
f"border-radius: 8px; margin: 10px; color: #333;'>"
|
133 |
+
f"<strong>Selected Task:</strong> Efficiency difference is <strong>{diff:.2f} Wh</strong> "
|
134 |
+
f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)"
|
135 |
+
f"</div>"
|
136 |
+
)
|
137 |
+
|
138 |
+
# --- Function to zip all CSV files (unchanged) ---
|
139 |
def zip_csv_files():
|
140 |
data_dir = "data/energy"
|
141 |
zip_filename = "data.zip"
|
|
|
147 |
return zip_filename
|
148 |
|
149 |
def get_zip_data_link():
|
|
|
150 |
zip_filename = zip_csv_files()
|
151 |
with open(zip_filename, "rb") as f:
|
152 |
data = f.read()
|
|
|
166 |
df = df.iloc[:, 1:]
|
167 |
df['energy_score'] = df['energy_score'].astype(int)
|
168 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
169 |
+
# Add Provider column (text before the slash in the model field)
|
170 |
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
171 |
df['Model'] = df['model'].apply(make_link)
|
172 |
df['Score'] = df['energy_score'].apply(format_stars)
|
173 |
+
ascending = (sort_order == "Low to High")
|
174 |
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
175 |
return generate_html_table_from_df(df)
|
176 |
|
|
|
182 |
df = df.iloc[:, 1:]
|
183 |
df['energy_score'] = df['energy_score'].astype(int)
|
184 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
|
|
185 |
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
186 |
df['Model'] = df['model'].apply(make_link)
|
187 |
df['Score'] = df['energy_score'].apply(format_stars)
|
188 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
189 |
all_df = all_df.drop_duplicates(subset=['model'])
|
190 |
+
ascending = (sort_order == "Low to High")
|
191 |
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
192 |
return generate_html_table_from_df(all_df)
|
193 |
|
|
|
199 |
df = df[df['class'] == model_class]
|
200 |
df['energy_score'] = df['energy_score'].astype(int)
|
201 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
|
|
202 |
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
203 |
df['Model'] = df['model'].apply(make_link)
|
204 |
df['Score'] = df['energy_score'].apply(format_stars)
|
205 |
+
ascending = (sort_order == "Low to High")
|
206 |
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
207 |
return generate_html_table_from_df(df)
|
208 |
|
|
|
214 |
"C (Multiple Cloud GPUs) >66B parameters": "C"
|
215 |
}
|
216 |
model_class = mapping.get(selected_display, "A")
|
217 |
+
table_html = get_text_generation_model_names_html(model_class, sort_order)
|
218 |
+
# Update the task-specific callout for text generation
|
219 |
+
task_diff_html = get_efficiency_diff_for_task('text_generation.csv')
|
220 |
+
return table_html, task_diff_html
|
221 |
|
222 |
def update_image_generation(sort_order):
|
223 |
+
table_html = get_model_names_html('image_generation.csv', sort_order)
|
224 |
+
task_diff_html = get_efficiency_diff_for_task('image_generation.csv')
|
225 |
+
return table_html, task_diff_html
|
226 |
|
227 |
def update_text_classification(sort_order):
|
228 |
+
table_html = get_model_names_html('text_classification.csv', sort_order)
|
229 |
+
task_diff_html = get_efficiency_diff_for_task('text_classification.csv')
|
230 |
+
return table_html, task_diff_html
|
231 |
|
232 |
def update_image_classification(sort_order):
|
233 |
+
table_html = get_model_names_html('image_classification.csv', sort_order)
|
234 |
+
task_diff_html = get_efficiency_diff_for_task('image_classification.csv')
|
235 |
+
return table_html, task_diff_html
|
236 |
|
237 |
def update_image_captioning(sort_order):
|
238 |
+
table_html = get_model_names_html('image_captioning.csv', sort_order)
|
239 |
+
task_diff_html = get_efficiency_diff_for_task('image_captioning.csv')
|
240 |
+
return table_html, task_diff_html
|
241 |
|
242 |
def update_summarization(sort_order):
|
243 |
+
table_html = get_model_names_html('summarization.csv', sort_order)
|
244 |
+
task_diff_html = get_efficiency_diff_for_task('summarization.csv')
|
245 |
+
return table_html, task_diff_html
|
246 |
|
247 |
def update_asr(sort_order):
|
248 |
+
table_html = get_model_names_html('asr.csv', sort_order)
|
249 |
+
task_diff_html = get_efficiency_diff_for_task('asr.csv')
|
250 |
+
return table_html, task_diff_html
|
251 |
|
252 |
def update_object_detection(sort_order):
|
253 |
+
table_html = get_model_names_html('object_detection.csv', sort_order)
|
254 |
+
task_diff_html = get_efficiency_diff_for_task('object_detection.csv')
|
255 |
+
return table_html, task_diff_html
|
256 |
|
257 |
def update_sentence_similarity(sort_order):
|
258 |
+
table_html = get_model_names_html('sentence_similarity.csv', sort_order)
|
259 |
+
task_diff_html = get_efficiency_diff_for_task('sentence_similarity.csv')
|
260 |
+
return table_html, task_diff_html
|
261 |
|
262 |
def update_extractive_qa(sort_order):
|
263 |
+
table_html = get_model_names_html('question_answering.csv', sort_order)
|
264 |
+
task_diff_html = get_efficiency_diff_for_task('question_answering.csv')
|
265 |
+
return table_html, task_diff_html
|
266 |
|
267 |
def update_all_tasks(sort_order):
|
268 |
return get_all_model_names_html(sort_order)
|
|
|
287 |
""")
|
288 |
|
289 |
with demo:
|
290 |
+
# --- Header Links ---
|
291 |
gr.HTML(f'''
|
292 |
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
|
293 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
|
|
|
296 |
<a href="https://huggingface.github.io/AIEnergyScore/#documentation" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Documentation</a>
|
297 |
{get_zip_data_link()}
|
298 |
<a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Community</a>
|
299 |
+
</div>
|
300 |
''')
|
301 |
|
302 |
+
# --- Logo and Subtitle ---
|
303 |
gr.HTML('''
|
304 |
+
<div style="margin-top: 0px; text-align: center;">
|
305 |
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
|
306 |
alt="Logo"
|
307 |
+
style="max-width: 300px; height: auto; margin-bottom: 10px;">
|
308 |
+
</div>
|
309 |
''')
|
310 |
+
gr.Markdown('<div style="text-align: center; font-size: 1.2em;">Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.</div>')
|
|
|
311 |
|
312 |
+
# --- Callout Cards (Row at the Top) ---
|
313 |
+
with gr.Row():
|
314 |
+
all_models_card = gr.HTML(get_efficiency_diff_for_all())
|
315 |
+
# Initially, we show the stats for text_generation as default for the selected task.
|
316 |
+
selected_task_card = gr.HTML(get_efficiency_diff_for_task('text_generation.csv'))
|
317 |
+
|
318 |
+
# --- Tabs for the Different Tasks ---
|
319 |
with gr.Tabs():
|
320 |
# --- Text Generation Tab ---
|
321 |
with gr.TabItem("Text Generation π¬"):
|
|
|
335 |
label="Sort",
|
336 |
value="Low to High"
|
337 |
)
|
338 |
+
# Two outputs: the table and the task callout card.
|
339 |
tg_table = gr.HTML(get_text_generation_model_names_html("A", "Low to High"))
|
340 |
+
model_class_dropdown.change(
|
341 |
+
fn=update_text_generation,
|
342 |
+
inputs=[model_class_dropdown, sort_dropdown_tg],
|
343 |
+
outputs=[tg_table, selected_task_card]
|
344 |
+
)
|
345 |
+
sort_dropdown_tg.change(
|
346 |
+
fn=update_text_generation,
|
347 |
+
inputs=[model_class_dropdown, sort_dropdown_tg],
|
348 |
+
outputs=[tg_table, selected_task_card]
|
349 |
+
)
|
350 |
|
351 |
# --- Image Generation Tab ---
|
352 |
with gr.TabItem("Image Generation π·"):
|
|
|
356 |
value="Low to High"
|
357 |
)
|
358 |
img_table = gr.HTML(get_model_names_html('image_generation.csv', "Low to High"))
|
359 |
+
sort_dropdown_img.change(
|
360 |
+
fn=update_image_generation,
|
361 |
+
inputs=sort_dropdown_img,
|
362 |
+
outputs=[img_table, selected_task_card]
|
363 |
+
)
|
364 |
|
365 |
# --- Text Classification Tab ---
|
366 |
with gr.TabItem("Text Classification π"):
|
|
|
370 |
value="Low to High"
|
371 |
)
|
372 |
tc_table = gr.HTML(get_model_names_html('text_classification.csv', "Low to High"))
|
373 |
+
sort_dropdown_tc.change(
|
374 |
+
fn=update_text_classification,
|
375 |
+
inputs=sort_dropdown_tc,
|
376 |
+
outputs=[tc_table, selected_task_card]
|
377 |
+
)
|
378 |
|
379 |
# --- Image Classification Tab ---
|
380 |
with gr.TabItem("Image Classification πΌοΈ"):
|
|
|
384 |
value="Low to High"
|
385 |
)
|
386 |
ic_table = gr.HTML(get_model_names_html('image_classification.csv', "Low to High"))
|
387 |
+
sort_dropdown_ic.change(
|
388 |
+
fn=update_image_classification,
|
389 |
+
inputs=sort_dropdown_ic,
|
390 |
+
outputs=[ic_table, selected_task_card]
|
391 |
+
)
|
392 |
|
393 |
# --- Image Captioning Tab ---
|
394 |
with gr.TabItem("Image Captioning π"):
|
|
|
398 |
value="Low to High"
|
399 |
)
|
400 |
icap_table = gr.HTML(get_model_names_html('image_captioning.csv', "Low to High"))
|
401 |
+
sort_dropdown_icap.change(
|
402 |
+
fn=update_image_captioning,
|
403 |
+
inputs=sort_dropdown_icap,
|
404 |
+
outputs=[icap_table, selected_task_card]
|
405 |
+
)
|
406 |
|
407 |
# --- Summarization Tab ---
|
408 |
with gr.TabItem("Summarization π"):
|
|
|
412 |
value="Low to High"
|
413 |
)
|
414 |
sum_table = gr.HTML(get_model_names_html('summarization.csv', "Low to High"))
|
415 |
+
sort_dropdown_sum.change(
|
416 |
+
fn=update_summarization,
|
417 |
+
inputs=sort_dropdown_sum,
|
418 |
+
outputs=[sum_table, selected_task_card]
|
419 |
+
)
|
420 |
|
421 |
# --- Automatic Speech Recognition Tab ---
|
422 |
with gr.TabItem("Automatic Speech Recognition π¬"):
|
|
|
426 |
value="Low to High"
|
427 |
)
|
428 |
asr_table = gr.HTML(get_model_names_html('asr.csv', "Low to High"))
|
429 |
+
sort_dropdown_asr.change(
|
430 |
+
fn=update_asr,
|
431 |
+
inputs=sort_dropdown_asr,
|
432 |
+
outputs=[asr_table, selected_task_card]
|
433 |
+
)
|
434 |
|
435 |
# --- Object Detection Tab ---
|
436 |
with gr.TabItem("Object Detection π"):
|
|
|
440 |
value="Low to High"
|
441 |
)
|
442 |
od_table = gr.HTML(get_model_names_html('object_detection.csv', "Low to High"))
|
443 |
+
sort_dropdown_od.change(
|
444 |
+
fn=update_object_detection,
|
445 |
+
inputs=sort_dropdown_od,
|
446 |
+
outputs=[od_table, selected_task_card]
|
447 |
+
)
|
448 |
|
449 |
# --- Sentence Similarity Tab ---
|
450 |
with gr.TabItem("Sentence Similarity π"):
|
|
|
454 |
value="Low to High"
|
455 |
)
|
456 |
ss_table = gr.HTML(get_model_names_html('sentence_similarity.csv', "Low to High"))
|
457 |
+
sort_dropdown_ss.change(
|
458 |
+
fn=update_sentence_similarity,
|
459 |
+
inputs=sort_dropdown_ss,
|
460 |
+
outputs=[ss_table, selected_task_card]
|
461 |
+
)
|
462 |
|
463 |
# --- Extractive QA Tab ---
|
464 |
with gr.TabItem("Extractive QA β"):
|
|
|
468 |
value="Low to High"
|
469 |
)
|
470 |
qa_table = gr.HTML(get_model_names_html('question_answering.csv', "Low to High"))
|
471 |
+
sort_dropdown_qa.change(
|
472 |
+
fn=update_extractive_qa,
|
473 |
+
inputs=sort_dropdown_qa,
|
474 |
+
outputs=[qa_table, selected_task_card]
|
475 |
+
)
|
476 |
|
477 |
+
# --- All Tasks Tab (only table update) ---
|
478 |
with gr.TabItem("All Tasks π‘"):
|
479 |
sort_dropdown_all = gr.Dropdown(
|
480 |
choices=["Low to High", "High to Low"],
|