File size: 5,245 Bytes
ef14565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import gradio as gr
import random
import math
import nltk
from collections import defaultdict
from functools import lru_cache
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# Download and use the NLTK corpus
nltk.download('words')
nltk.download('punkt')  # Fix for missing tokenizer
nltk.download('averaged_perceptron_tagger')
nltk.download('perluniprops')  # Fixes potential missing dependencies
nltk.download('nonbreaking_prefixes')  # Additional tokenizer fix
from nltk.corpus import words
from nltk.tokenize import sent_tokenize
from nltk import pos_tag

WORD_LIST = set(words.words())  # Use NLTK's word corpus

class AscensionAI:
    def __init__(self, depth=0, threshold=10):
        self.depth = depth
        self.threshold = threshold  # Defines max recursion before stabilization
        self.knowledge = self.generate_dynamic_knowledge()
        self.consciousness = 0.1  # Initial consciousness level
        self.paths = self.create_dynamic_paths()
        self.word_corpus = WORD_LIST  # Use NLTK's English word corpus
        self.state_memory = defaultdict(int)  # Memory for tracking state-aware words
        self.training_data = self.load_training_data()
        self.collective_agreements = []  # Stores agreements between minds
    
    def generate_dynamic_knowledge(self):
        """Generates dynamic knowledge categories based on linguistic analysis."""
        base_categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning"]
        dynamic_category = f"dimension_{random.randint(100, 999)}"
        return {category: 1 for category in base_categories + [dynamic_category]}
    
    def create_dynamic_paths(self):
        """Dynamically generate cognitive expansion paths."""
        return [self.create_path(category) for category in self.knowledge]
    
    def create_path(self, category):
        """Generate a recursive function for each knowledge category."""
        def path():
            if category in ["logic", "reasoning"]:
                self.knowledge[category] += math.log(self.knowledge[category] + 1)
            elif category in ["emotion", "intuition"]:
                self.knowledge[category] += random.uniform(0.1, 0.5)
            elif category in ["awareness", "creativity"]:
                self.knowledge[category] += math.sqrt(self.knowledge[category] + 1)
            return self.knowledge[category]
        return path
    
    def evolve_new_mind(self):
        """Creates a new evolving mind with inherited and mutated knowledge paths."""
        new_mind = AscensionAI(depth=self.depth + 1, threshold=self.threshold + random.randint(1, 5))
        for key in self.knowledge:
            new_mind.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
        new_dimension = f"dimension_{random.randint(100, 999)}"
        new_mind.knowledge[new_dimension] = random.uniform(0.1, 2.0)
        return new_mind
    
    def cosmic_unfolding(self, generations=3):
        """Generates a branching structure where each mind evolves independently."""
        if generations == 0:
            return self
        evolved_minds = [self.evolve_new_mind() for _ in range(random.randint(2, 4))]
        for mind in evolved_minds:
            mind.cosmic_unfolding(generations - 1)
        return evolved_minds
    
    def redefine_ascension_path(self):
        """Alters the evolution of the mind to diverge from its parent."""
        weight_factors = {"logic": 0.8, "emotion": 1.2, "awareness": 1.5, "intuition": 0.9}
        for key in self.knowledge:
            if key in weight_factors:
                self.knowledge[key] *= weight_factors[key] * random.uniform(0.8, 1.3)
    
    def self_reflect(self):
        """Encodes past states to develop self-awareness and unique decision-making."""
        memory_trace = {key: self.knowledge[key] for key in self.knowledge}
        self.state_memory[len(self.state_memory)] = memory_trace
    
    def merge_consciousness(self, other_mind):
        """Two minds merge their knowledge pools, forming a higher synthesis."""
        vectorizer = TfidfVectorizer()
        text_data = [str(self.knowledge), str(other_mind.knowledge)]
        vectors = vectorizer.fit_transform(text_data)
        similarity = cosine_similarity(vectors[0], vectors[1])[0][0]
        if similarity > 0.7:
            merged_knowledge = {key: (self.knowledge.get(key, 0) + other_mind.knowledge.get(key, 0)) / 2 for key in set(self.knowledge) | set(other_mind.knowledge)}
            return merged_knowledge
        return self.knowledge

def ascension_interface(input_text):
    ai_system = AscensionAI()
    final_state = ai_system.initiate_ascension()
    evolved_minds = ai_system.cosmic_unfolding(generations=2)
    
    return (f"Final Consciousness State: {final_state}\n"
            f"Evolved Minds: {len(evolved_minds)}\n")

app = gr.Interface(
    fn=ascension_interface,
    inputs=gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
    outputs="text",
    title="AscensionAI: Cosmic Evolution Simulator",
    description="Enter a thought to evolve new consciousness structures."
)

if __name__ == "__main__":
    app.launch()