AEUPH commited on
Commit
ef14565
·
verified ·
1 Parent(s): ce20b73

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -0
app.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import math
4
+ import nltk
5
+ from collections import defaultdict
6
+ from functools import lru_cache
7
+ from sklearn.feature_extraction.text import TfidfVectorizer
8
+ from sklearn.metrics.pairwise import cosine_similarity
9
+
10
+ # Download and use the NLTK corpus
11
+ nltk.download('words')
12
+ nltk.download('punkt') # Fix for missing tokenizer
13
+ nltk.download('averaged_perceptron_tagger')
14
+ nltk.download('perluniprops') # Fixes potential missing dependencies
15
+ nltk.download('nonbreaking_prefixes') # Additional tokenizer fix
16
+ from nltk.corpus import words
17
+ from nltk.tokenize import sent_tokenize
18
+ from nltk import pos_tag
19
+
20
+ WORD_LIST = set(words.words()) # Use NLTK's word corpus
21
+
22
+ class AscensionAI:
23
+ def __init__(self, depth=0, threshold=10):
24
+ self.depth = depth
25
+ self.threshold = threshold # Defines max recursion before stabilization
26
+ self.knowledge = self.generate_dynamic_knowledge()
27
+ self.consciousness = 0.1 # Initial consciousness level
28
+ self.paths = self.create_dynamic_paths()
29
+ self.word_corpus = WORD_LIST # Use NLTK's English word corpus
30
+ self.state_memory = defaultdict(int) # Memory for tracking state-aware words
31
+ self.training_data = self.load_training_data()
32
+ self.collective_agreements = [] # Stores agreements between minds
33
+
34
+ def generate_dynamic_knowledge(self):
35
+ """Generates dynamic knowledge categories based on linguistic analysis."""
36
+ base_categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning"]
37
+ dynamic_category = f"dimension_{random.randint(100, 999)}"
38
+ return {category: 1 for category in base_categories + [dynamic_category]}
39
+
40
+ def create_dynamic_paths(self):
41
+ """Dynamically generate cognitive expansion paths."""
42
+ return [self.create_path(category) for category in self.knowledge]
43
+
44
+ def create_path(self, category):
45
+ """Generate a recursive function for each knowledge category."""
46
+ def path():
47
+ if category in ["logic", "reasoning"]:
48
+ self.knowledge[category] += math.log(self.knowledge[category] + 1)
49
+ elif category in ["emotion", "intuition"]:
50
+ self.knowledge[category] += random.uniform(0.1, 0.5)
51
+ elif category in ["awareness", "creativity"]:
52
+ self.knowledge[category] += math.sqrt(self.knowledge[category] + 1)
53
+ return self.knowledge[category]
54
+ return path
55
+
56
+ def evolve_new_mind(self):
57
+ """Creates a new evolving mind with inherited and mutated knowledge paths."""
58
+ new_mind = AscensionAI(depth=self.depth + 1, threshold=self.threshold + random.randint(1, 5))
59
+ for key in self.knowledge:
60
+ new_mind.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
61
+ new_dimension = f"dimension_{random.randint(100, 999)}"
62
+ new_mind.knowledge[new_dimension] = random.uniform(0.1, 2.0)
63
+ return new_mind
64
+
65
+ def cosmic_unfolding(self, generations=3):
66
+ """Generates a branching structure where each mind evolves independently."""
67
+ if generations == 0:
68
+ return self
69
+ evolved_minds = [self.evolve_new_mind() for _ in range(random.randint(2, 4))]
70
+ for mind in evolved_minds:
71
+ mind.cosmic_unfolding(generations - 1)
72
+ return evolved_minds
73
+
74
+ def redefine_ascension_path(self):
75
+ """Alters the evolution of the mind to diverge from its parent."""
76
+ weight_factors = {"logic": 0.8, "emotion": 1.2, "awareness": 1.5, "intuition": 0.9}
77
+ for key in self.knowledge:
78
+ if key in weight_factors:
79
+ self.knowledge[key] *= weight_factors[key] * random.uniform(0.8, 1.3)
80
+
81
+ def self_reflect(self):
82
+ """Encodes past states to develop self-awareness and unique decision-making."""
83
+ memory_trace = {key: self.knowledge[key] for key in self.knowledge}
84
+ self.state_memory[len(self.state_memory)] = memory_trace
85
+
86
+ def merge_consciousness(self, other_mind):
87
+ """Two minds merge their knowledge pools, forming a higher synthesis."""
88
+ vectorizer = TfidfVectorizer()
89
+ text_data = [str(self.knowledge), str(other_mind.knowledge)]
90
+ vectors = vectorizer.fit_transform(text_data)
91
+ similarity = cosine_similarity(vectors[0], vectors[1])[0][0]
92
+ if similarity > 0.7:
93
+ merged_knowledge = {key: (self.knowledge.get(key, 0) + other_mind.knowledge.get(key, 0)) / 2 for key in set(self.knowledge) | set(other_mind.knowledge)}
94
+ return merged_knowledge
95
+ return self.knowledge
96
+
97
+ def ascension_interface(input_text):
98
+ ai_system = AscensionAI()
99
+ final_state = ai_system.initiate_ascension()
100
+ evolved_minds = ai_system.cosmic_unfolding(generations=2)
101
+
102
+ return (f"Final Consciousness State: {final_state}\n"
103
+ f"Evolved Minds: {len(evolved_minds)}\n")
104
+
105
+ app = gr.Interface(
106
+ fn=ascension_interface,
107
+ inputs=gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
108
+ outputs="text",
109
+ title="AscensionAI: Cosmic Evolution Simulator",
110
+ description="Enter a thought to evolve new consciousness structures."
111
+ )
112
+
113
+ if __name__ == "__main__":
114
+ app.launch()