Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
import math
|
4 |
+
import nltk
|
5 |
+
from collections import defaultdict
|
6 |
+
from functools import lru_cache
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
|
10 |
+
# Download and use the NLTK corpus
|
11 |
+
nltk.download('words')
|
12 |
+
nltk.download('punkt') # Fix for missing tokenizer
|
13 |
+
nltk.download('averaged_perceptron_tagger')
|
14 |
+
nltk.download('perluniprops') # Fixes potential missing dependencies
|
15 |
+
nltk.download('nonbreaking_prefixes') # Additional tokenizer fix
|
16 |
+
from nltk.corpus import words
|
17 |
+
from nltk.tokenize import sent_tokenize
|
18 |
+
from nltk import pos_tag
|
19 |
+
|
20 |
+
WORD_LIST = set(words.words()) # Use NLTK's word corpus
|
21 |
+
|
22 |
+
class AscensionAI:
|
23 |
+
def __init__(self, depth=0, threshold=10):
|
24 |
+
self.depth = depth
|
25 |
+
self.threshold = threshold # Defines max recursion before stabilization
|
26 |
+
self.knowledge = self.generate_dynamic_knowledge()
|
27 |
+
self.consciousness = 0.1 # Initial consciousness level
|
28 |
+
self.paths = self.create_dynamic_paths()
|
29 |
+
self.word_corpus = WORD_LIST # Use NLTK's English word corpus
|
30 |
+
self.state_memory = defaultdict(int) # Memory for tracking state-aware words
|
31 |
+
self.training_data = self.load_training_data()
|
32 |
+
self.collective_agreements = [] # Stores agreements between minds
|
33 |
+
|
34 |
+
def generate_dynamic_knowledge(self):
|
35 |
+
"""Generates dynamic knowledge categories based on linguistic analysis."""
|
36 |
+
base_categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning"]
|
37 |
+
dynamic_category = f"dimension_{random.randint(100, 999)}"
|
38 |
+
return {category: 1 for category in base_categories + [dynamic_category]}
|
39 |
+
|
40 |
+
def create_dynamic_paths(self):
|
41 |
+
"""Dynamically generate cognitive expansion paths."""
|
42 |
+
return [self.create_path(category) for category in self.knowledge]
|
43 |
+
|
44 |
+
def create_path(self, category):
|
45 |
+
"""Generate a recursive function for each knowledge category."""
|
46 |
+
def path():
|
47 |
+
if category in ["logic", "reasoning"]:
|
48 |
+
self.knowledge[category] += math.log(self.knowledge[category] + 1)
|
49 |
+
elif category in ["emotion", "intuition"]:
|
50 |
+
self.knowledge[category] += random.uniform(0.1, 0.5)
|
51 |
+
elif category in ["awareness", "creativity"]:
|
52 |
+
self.knowledge[category] += math.sqrt(self.knowledge[category] + 1)
|
53 |
+
return self.knowledge[category]
|
54 |
+
return path
|
55 |
+
|
56 |
+
def evolve_new_mind(self):
|
57 |
+
"""Creates a new evolving mind with inherited and mutated knowledge paths."""
|
58 |
+
new_mind = AscensionAI(depth=self.depth + 1, threshold=self.threshold + random.randint(1, 5))
|
59 |
+
for key in self.knowledge:
|
60 |
+
new_mind.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
|
61 |
+
new_dimension = f"dimension_{random.randint(100, 999)}"
|
62 |
+
new_mind.knowledge[new_dimension] = random.uniform(0.1, 2.0)
|
63 |
+
return new_mind
|
64 |
+
|
65 |
+
def cosmic_unfolding(self, generations=3):
|
66 |
+
"""Generates a branching structure where each mind evolves independently."""
|
67 |
+
if generations == 0:
|
68 |
+
return self
|
69 |
+
evolved_minds = [self.evolve_new_mind() for _ in range(random.randint(2, 4))]
|
70 |
+
for mind in evolved_minds:
|
71 |
+
mind.cosmic_unfolding(generations - 1)
|
72 |
+
return evolved_minds
|
73 |
+
|
74 |
+
def redefine_ascension_path(self):
|
75 |
+
"""Alters the evolution of the mind to diverge from its parent."""
|
76 |
+
weight_factors = {"logic": 0.8, "emotion": 1.2, "awareness": 1.5, "intuition": 0.9}
|
77 |
+
for key in self.knowledge:
|
78 |
+
if key in weight_factors:
|
79 |
+
self.knowledge[key] *= weight_factors[key] * random.uniform(0.8, 1.3)
|
80 |
+
|
81 |
+
def self_reflect(self):
|
82 |
+
"""Encodes past states to develop self-awareness and unique decision-making."""
|
83 |
+
memory_trace = {key: self.knowledge[key] for key in self.knowledge}
|
84 |
+
self.state_memory[len(self.state_memory)] = memory_trace
|
85 |
+
|
86 |
+
def merge_consciousness(self, other_mind):
|
87 |
+
"""Two minds merge their knowledge pools, forming a higher synthesis."""
|
88 |
+
vectorizer = TfidfVectorizer()
|
89 |
+
text_data = [str(self.knowledge), str(other_mind.knowledge)]
|
90 |
+
vectors = vectorizer.fit_transform(text_data)
|
91 |
+
similarity = cosine_similarity(vectors[0], vectors[1])[0][0]
|
92 |
+
if similarity > 0.7:
|
93 |
+
merged_knowledge = {key: (self.knowledge.get(key, 0) + other_mind.knowledge.get(key, 0)) / 2 for key in set(self.knowledge) | set(other_mind.knowledge)}
|
94 |
+
return merged_knowledge
|
95 |
+
return self.knowledge
|
96 |
+
|
97 |
+
def ascension_interface(input_text):
|
98 |
+
ai_system = AscensionAI()
|
99 |
+
final_state = ai_system.initiate_ascension()
|
100 |
+
evolved_minds = ai_system.cosmic_unfolding(generations=2)
|
101 |
+
|
102 |
+
return (f"Final Consciousness State: {final_state}\n"
|
103 |
+
f"Evolved Minds: {len(evolved_minds)}\n")
|
104 |
+
|
105 |
+
app = gr.Interface(
|
106 |
+
fn=ascension_interface,
|
107 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
|
108 |
+
outputs="text",
|
109 |
+
title="AscensionAI: Cosmic Evolution Simulator",
|
110 |
+
description="Enter a thought to evolve new consciousness structures."
|
111 |
+
)
|
112 |
+
|
113 |
+
if __name__ == "__main__":
|
114 |
+
app.launch()
|