Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import glob | |
import torch | |
import shutil | |
import torchaudio | |
import pytorch_lightning as pl | |
import random | |
from tqdm import tqdm | |
from pathlib import Path | |
from remfx import effects as effect_lib | |
from typing import Any, List, Dict | |
from torch.utils.data import Dataset, DataLoader | |
from remfx.utils import select_random_chunk | |
import multiprocessing | |
from auraloss.freq import MultiResolutionSTFTLoss | |
STFT_THRESH = 1e-3 | |
ALL_EFFECTS = effect_lib.Pedalboard_Effects | |
vocalset_splits = { | |
"train": [ | |
"male1", | |
"male2", | |
"male3", | |
"male4", | |
"male5", | |
"male6", | |
"male7", | |
"male8", | |
"male9", | |
"female1", | |
"female2", | |
"female3", | |
"female4", | |
"female5", | |
"female6", | |
"female7", | |
], | |
"val": ["male10", "female8"], | |
"test": ["male11", "female9"], | |
} | |
guitarset_splits = {"train": ["00", "01", "02", "03"], "val": ["04"], "test": ["05"]} | |
dsd_100_splits = { | |
"train": ["train"], | |
"val": ["val"], | |
"test": ["test"], | |
} | |
idmt_drums_splits = { | |
"train": ["WaveDrum02", "TechnoDrum01"], | |
"val": ["RealDrum01"], | |
"test": ["TechnoDrum02", "WaveDrum01"], | |
} | |
def locate_files(root: str, mode: str): | |
file_list = [] | |
# ------------------------- VocalSet ------------------------- | |
vocalset_dir = os.path.join(root, "VocalSet1-2") | |
if os.path.isdir(vocalset_dir): | |
# find all singer directories | |
singer_dirs = glob.glob(os.path.join(vocalset_dir, "data_by_singer", "*")) | |
singer_dirs = [ | |
sd for sd in singer_dirs if os.path.basename(sd) in vocalset_splits[mode] | |
] | |
files = [] | |
for singer_dir in singer_dirs: | |
files += glob.glob(os.path.join(singer_dir, "**", "**", "*.wav")) | |
print(f"Found {len(files)} files in VocalSet {mode}.") | |
file_list.append(sorted(files)) | |
# ------------------------- GuitarSet ------------------------- | |
guitarset_dir = os.path.join(root, "audio_mono-mic") | |
if os.path.isdir(guitarset_dir): | |
files = glob.glob(os.path.join(guitarset_dir, "*.wav")) | |
files = [ | |
f | |
for f in files | |
if os.path.basename(f).split("_")[0] in guitarset_splits[mode] | |
] | |
print(f"Found {len(files)} files in GuitarSet {mode}.") | |
file_list.append(sorted(files)) | |
# ------------------------- DSD100 --------------------------------- | |
dsd_100_dir = os.path.join(root, "DSD100/DSD100") | |
if os.path.isdir(dsd_100_dir): | |
files = glob.glob( | |
os.path.join(dsd_100_dir, mode, "**", "*.wav"), | |
recursive=True, | |
) | |
file_list.append(sorted(files)) | |
print(f"Found {len(files)} files in DSD100 {mode}.") | |
# ------------------------- IDMT-SMT-DRUMS ------------------------- | |
idmt_smt_drums_dir = os.path.join(root, "IDMT-SMT-DRUMS-V2") | |
if os.path.isdir(idmt_smt_drums_dir): | |
files = glob.glob(os.path.join(idmt_smt_drums_dir, "audio", "*.wav")) | |
files = [ | |
f | |
for f in files | |
if os.path.basename(f).split("_")[0] in idmt_drums_splits[mode] | |
] | |
file_list.append(sorted(files)) | |
print(f"Found {len(files)} files in IDMT-SMT-Drums {mode}.") | |
return file_list | |
def parallel_process_effects( | |
chunk_idx: int, | |
proc_root: str, | |
files: list, | |
chunk_size: int, | |
effects: list, | |
effects_to_keep: list, | |
num_kept_effects: tuple, | |
shuffle_kept_effects: bool, | |
effects_to_remove: list, | |
num_removed_effects: tuple, | |
shuffle_removed_effects: bool, | |
sample_rate: int, | |
target_lufs_db: float, | |
): | |
"""Note: This function has an issue with random seed. It may not fully randomize the effects.""" | |
chunk = None | |
random_dataset_choice = random.choice(files) | |
while chunk is None: | |
random_file_choice = random.choice(random_dataset_choice) | |
chunk = select_random_chunk(random_file_choice, chunk_size, sample_rate) | |
# Sum to mono | |
if chunk.shape[0] > 1: | |
chunk = chunk.sum(0, keepdim=True) | |
dry = chunk | |
# loudness normalization | |
normalize = effect_lib.LoudnessNormalize(sample_rate, target_lufs_db=target_lufs_db) | |
# Apply Kept Effects | |
# Shuffle effects if specified | |
if shuffle_kept_effects: | |
effect_indices = torch.randperm(len(effects_to_keep)) | |
else: | |
effect_indices = torch.arange(len(effects_to_keep)) | |
r1 = num_kept_effects[0] | |
r2 = num_kept_effects[1] | |
num_kept_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int() | |
effect_indices = effect_indices[:num_kept_effects] | |
# Index in effect settings | |
effect_names_to_apply = [effects_to_keep[i] for i in effect_indices] | |
effects_to_apply = [effects[i] for i in effect_names_to_apply] | |
# Apply | |
dry_labels = [] | |
for effect in effects_to_apply: | |
# Normalize in-between effects | |
dry = normalize(effect(dry)) | |
dry_labels.append(ALL_EFFECTS.index(type(effect))) | |
# Apply effects_to_remove | |
# Shuffle effects if specified | |
if shuffle_removed_effects: | |
effect_indices = torch.randperm(len(effects_to_remove)) | |
else: | |
effect_indices = torch.arange(len(effects_to_remove)) | |
wet = torch.clone(dry) | |
r1 = num_removed_effects[0] | |
r2 = num_removed_effects[1] | |
num_removed_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int() | |
effect_indices = effect_indices[:num_removed_effects] | |
# Index in effect settings | |
effect_names_to_apply = [effects_to_remove[i] for i in effect_indices] | |
effects_to_apply = [effects[i] for i in effect_names_to_apply] | |
# Apply | |
wet_labels = [] | |
for effect in effects_to_apply: | |
# Normalize in-between effects | |
wet = normalize(effect(wet)) | |
wet_labels.append(ALL_EFFECTS.index(type(effect))) | |
wet_labels_tensor = torch.zeros(len(ALL_EFFECTS)) | |
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS)) | |
for label_idx in wet_labels: | |
wet_labels_tensor[label_idx] = 1.0 | |
for label_idx in dry_labels: | |
dry_labels_tensor[label_idx] = 1.0 | |
# Normalize | |
normalized_dry = normalize(dry) | |
normalized_wet = normalize(wet) | |
output_dir = proc_root / str(chunk_idx) | |
output_dir.mkdir(exist_ok=True) | |
torchaudio.save(output_dir / "input.wav", normalized_wet, sample_rate) | |
torchaudio.save(output_dir / "target.wav", normalized_dry, sample_rate) | |
torch.save(dry_labels_tensor, output_dir / "dry_effects.pt") | |
torch.save(wet_labels_tensor, output_dir / "wet_effects.pt") | |
# return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor | |
class DynamicEffectDataset(Dataset): | |
def __init__( | |
self, | |
root: str, | |
sample_rate: int, | |
chunk_size: int = 262144, | |
total_chunks: int = 1000, | |
effect_modules: List[Dict[str, torch.nn.Module]] = None, | |
effects_to_keep: List[str] = None, | |
effects_to_remove: List[str] = None, | |
num_kept_effects: List[int] = [1, 5], | |
num_removed_effects: List[int] = [1, 5], | |
shuffle_kept_effects: bool = True, | |
shuffle_removed_effects: bool = False, | |
render_files: bool = True, | |
render_root: str = None, | |
mode: str = "train", | |
parallel: bool = False, | |
) -> None: | |
super().__init__() | |
self.chunks = [] | |
self.song_idx = [] | |
self.root = Path(root) | |
self.render_root = Path(render_root) | |
self.chunk_size = chunk_size | |
self.total_chunks = total_chunks | |
self.sample_rate = sample_rate | |
self.mode = mode | |
self.num_kept_effects = num_kept_effects | |
self.num_removed_effects = num_removed_effects | |
self.effects_to_keep = [] if effects_to_keep is None else effects_to_keep | |
self.effects_to_remove = [] if effects_to_remove is None else effects_to_remove | |
self.normalize = effect_lib.LoudnessNormalize(sample_rate, target_lufs_db=-20) | |
self.effects = effect_modules | |
self.shuffle_kept_effects = shuffle_kept_effects | |
self.shuffle_removed_effects = shuffle_removed_effects | |
effects_string = "_".join( | |
self.effects_to_keep | |
+ ["_"] | |
+ self.effects_to_remove | |
+ ["_"] | |
+ [str(x) for x in num_kept_effects] | |
+ ["_"] | |
+ [str(x) for x in num_removed_effects] | |
) | |
# self.validate_effect_input() | |
# self.proc_root = self.render_root / "processed" / effects_string / self.mode | |
self.parallel = parallel | |
self.files = locate_files(self.root, self.mode) | |
def process_effects(self, dry: torch.Tensor): | |
# Apply Kept Effects | |
# Shuffle effects if specified | |
if self.shuffle_kept_effects: | |
effect_indices = torch.randperm(len(self.effects_to_keep)) | |
else: | |
effect_indices = torch.arange(len(self.effects_to_keep)) | |
r1 = self.num_kept_effects[0] | |
r2 = self.num_kept_effects[1] | |
num_kept_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int() | |
effect_indices = effect_indices[:num_kept_effects] | |
# Index in effect settings | |
effect_names_to_apply = [self.effects_to_keep[i] for i in effect_indices] | |
effects_to_apply = [self.effects[i] for i in effect_names_to_apply] | |
# Apply | |
dry_labels = [] | |
for effect in effects_to_apply: | |
# Normalize in-between effects | |
dry = self.normalize(effect(dry)) | |
dry_labels.append(ALL_EFFECTS.index(type(effect))) | |
# Apply effects_to_remove | |
# Shuffle effects if specified | |
if self.shuffle_removed_effects: | |
effect_indices = torch.randperm(len(self.effects_to_remove)) | |
else: | |
effect_indices = torch.arange(len(self.effects_to_remove)) | |
wet = torch.clone(dry) | |
r1 = self.num_removed_effects[0] | |
r2 = self.num_removed_effects[1] | |
num_removed_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int() | |
effect_indices = effect_indices[:num_removed_effects] | |
# Index in effect settings | |
effect_names_to_apply = [self.effects_to_remove[i] for i in effect_indices] | |
effects_to_apply = [self.effects[i] for i in effect_names_to_apply] | |
# Apply | |
wet_labels = [] | |
for effect in effects_to_apply: | |
# Normalize in-between effects | |
wet = self.normalize(effect(wet)) | |
wet_labels.append(ALL_EFFECTS.index(type(effect))) | |
wet_labels_tensor = torch.zeros(len(ALL_EFFECTS)) | |
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS)) | |
for label_idx in wet_labels: | |
wet_labels_tensor[label_idx] = 1.0 | |
for label_idx in dry_labels: | |
dry_labels_tensor[label_idx] = 1.0 | |
# Normalize | |
normalized_dry = self.normalize(dry) | |
normalized_wet = self.normalize(wet) | |
return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor | |
def __len__(self): | |
return self.total_chunks | |
def __getitem__(self, _: int): | |
chunk = None | |
random_dataset_choice = random.choice(self.files) | |
while chunk is None: | |
random_file_choice = random.choice(random_dataset_choice) | |
chunk = select_random_chunk( | |
random_file_choice, self.chunk_size, self.sample_rate | |
) | |
# Sum to mono | |
if chunk.shape[0] > 1: | |
chunk = chunk.sum(0, keepdim=True) | |
dry, wet, dry_effects, wet_effects = self.process_effects(chunk) | |
return wet, dry, dry_effects, wet_effects | |
class EffectDataset(Dataset): | |
def __init__( | |
self, | |
root: str, | |
sample_rate: int, | |
chunk_size: int = 262144, | |
total_chunks: int = 1000, | |
effect_modules: List[Dict[str, torch.nn.Module]] = None, | |
effects_to_keep: List[str] = None, | |
effects_to_remove: List[str] = None, | |
num_kept_effects: List[int] = [1, 5], | |
num_removed_effects: List[int] = [1, 5], | |
shuffle_kept_effects: bool = True, | |
shuffle_removed_effects: bool = False, | |
render_files: bool = True, | |
render_root: str = None, | |
mode: str = "train", | |
parallel: bool = False, | |
): | |
super().__init__() | |
self.chunks = [] | |
self.song_idx = [] | |
self.root = Path(root) | |
self.render_root = Path(render_root) | |
self.chunk_size = chunk_size | |
self.total_chunks = total_chunks | |
self.sample_rate = sample_rate | |
self.mode = mode | |
self.num_kept_effects = num_kept_effects | |
self.num_removed_effects = num_removed_effects | |
self.effects_to_keep = [] if effects_to_keep is None else effects_to_keep | |
self.effects_to_remove = [] if effects_to_remove is None else effects_to_remove | |
self.normalize = effect_lib.LoudnessNormalize(sample_rate, target_lufs_db=-20) | |
self.mrstft = MultiResolutionSTFTLoss(sample_rate=sample_rate) | |
self.effects = effect_modules | |
self.shuffle_kept_effects = shuffle_kept_effects | |
self.shuffle_removed_effects = shuffle_removed_effects | |
effects_string = "_".join( | |
self.effects_to_keep | |
+ ["_"] | |
+ self.effects_to_remove | |
+ ["_"] | |
+ [str(x) for x in num_kept_effects] | |
+ ["_"] | |
+ [str(x) for x in num_removed_effects] | |
) | |
self.validate_effect_input() | |
self.proc_root = self.render_root / "processed" / effects_string / self.mode | |
self.parallel = parallel | |
self.files = locate_files(self.root, self.mode) | |
if self.proc_root.exists() and len(list(self.proc_root.iterdir())) > 0: | |
print("Found processed files.") | |
if render_files: | |
re_render = input( | |
"WARNING: By default, will re-render files.\n" | |
"Set render_files=False to skip re-rendering.\n" | |
"Are you sure you want to re-render? (y/n): " | |
) | |
if re_render != "y": | |
sys.exit() | |
shutil.rmtree(self.proc_root) | |
print("Total datasets:", len(self.files)) | |
print("Processing files...") | |
if render_files: | |
# Split audio file into chunks, resample, then apply random effects | |
self.proc_root.mkdir(parents=True, exist_ok=True) | |
if self.parallel: | |
items = [ | |
( | |
chunk_idx, | |
self.proc_root, | |
self.files, | |
self.chunk_size, | |
self.effects, | |
self.effects_to_keep, | |
self.num_kept_effects, | |
self.shuffle_kept_effects, | |
self.effects_to_remove, | |
self.num_removed_effects, | |
self.shuffle_removed_effects, | |
self.sample_rate, | |
-20.0, | |
) | |
for chunk_idx in range(self.total_chunks) | |
] | |
with multiprocessing.Pool(processes=32) as pool: | |
pool.starmap(parallel_process_effects, items) | |
print(f"Done proccessing {self.total_chunks}", flush=True) | |
else: | |
for num_chunk in tqdm(range(self.total_chunks)): | |
chunk = None | |
random_dataset_choice = random.choice(self.files) | |
while chunk is None: | |
try: | |
random_file_choice = random.choice(random_dataset_choice) | |
except IndexError: | |
print("IndexError") | |
print(random_dataset_choice) | |
print(random_file_choice) | |
raise IndexError | |
chunk = select_random_chunk( | |
random_file_choice, self.chunk_size, self.sample_rate | |
) | |
# Sum to mono | |
if chunk.shape[0] > 1: | |
chunk = chunk.sum(0, keepdim=True) | |
dry, wet, dry_effects, wet_effects = self.process_effects(chunk) | |
output_dir = self.proc_root / str(num_chunk) | |
output_dir.mkdir(exist_ok=True) | |
torchaudio.save(output_dir / "input.wav", wet, self.sample_rate) | |
torchaudio.save(output_dir / "target.wav", dry, self.sample_rate) | |
torch.save(dry_effects, output_dir / "dry_effects.pt") | |
torch.save(wet_effects, output_dir / "wet_effects.pt") | |
print("Finished rendering") | |
else: | |
self.total_chunks = len(list(self.proc_root.iterdir())) | |
print("Total chunks:", self.total_chunks) | |
def __len__(self): | |
return self.total_chunks | |
def __getitem__(self, idx): | |
input_file = self.proc_root / str(idx) / "input.wav" | |
target_file = self.proc_root / str(idx) / "target.wav" | |
dry_effect_names = torch.load(self.proc_root / str(idx) / "dry_effects.pt") | |
wet_effect_names = torch.load(self.proc_root / str(idx) / "wet_effects.pt") | |
input, sr = torchaudio.load(input_file) | |
target, sr = torchaudio.load(target_file) | |
return (input, target, dry_effect_names, wet_effect_names) | |
def validate_effect_input(self): | |
for effect in self.effects.values(): | |
if type(effect) not in ALL_EFFECTS: | |
raise ValueError( | |
f"Effect {effect} not found in ALL_EFFECTS. " | |
f"Please choose from {ALL_EFFECTS}" | |
) | |
for effect in self.effects_to_keep: | |
if effect not in self.effects.keys(): | |
raise ValueError( | |
f"Effect {effect} not found in self.effects. " | |
f"Please choose from {self.effects.keys()}" | |
) | |
for effect in self.effects_to_remove: | |
if effect not in self.effects.keys(): | |
raise ValueError( | |
f"Effect {effect} not found in self.effects. " | |
f"Please choose from {self.effects.keys()}" | |
) | |
kept_str = "randomly" if self.shuffle_kept_effects else "in order" | |
rem_str = "randomly" if self.shuffle_removed_effects else "in order" | |
if self.num_kept_effects[0] > self.num_kept_effects[1]: | |
raise ValueError( | |
f"num_kept_effects must be a tuple of (min, max). " | |
f"Got {self.num_kept_effects}" | |
) | |
if self.num_kept_effects[0] == self.num_kept_effects[1]: | |
num_kept_str = f"{self.num_kept_effects[0]}" | |
else: | |
num_kept_str = ( | |
f"Between {self.num_kept_effects[0]}-{self.num_kept_effects[1]}" | |
) | |
if self.num_removed_effects[0] > self.num_removed_effects[1]: | |
raise ValueError( | |
f"num_removed_effects must be a tuple of (min, max). " | |
f"Got {self.num_removed_effects}" | |
) | |
if self.num_removed_effects[0] == self.num_removed_effects[1]: | |
num_rem_str = f"{self.num_removed_effects[0]}" | |
else: | |
num_rem_str = ( | |
f"Between {self.num_removed_effects[0]}-{self.num_removed_effects[1]}" | |
) | |
rem_fx = self.effects_to_remove | |
kept_fx = self.effects_to_keep | |
print( | |
f"Effect Summary: \n" | |
f"Apply kept effects: {kept_fx} ({num_kept_str}, chosen {kept_str}) -> Dry\n" | |
f"Apply remove effects: {rem_fx} ({num_rem_str}, chosen {rem_str}) -> Wet\n" | |
) | |
def process_effects(self, dry: torch.Tensor): | |
# Apply Kept Effects | |
# Shuffle effects if specified | |
if self.shuffle_kept_effects: | |
effect_indices = torch.randperm(len(self.effects_to_keep)) | |
else: | |
effect_indices = torch.arange(len(self.effects_to_keep)) | |
r1 = self.num_kept_effects[0] | |
r2 = self.num_kept_effects[1] | |
num_kept_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int() | |
effect_indices = effect_indices[:num_kept_effects] | |
# Index in effect settings | |
effect_names_to_apply = [self.effects_to_keep[i] for i in effect_indices] | |
effects_to_apply = [self.effects[i] for i in effect_names_to_apply] | |
# stft comparison | |
stft = 0 | |
while stft < STFT_THRESH: | |
# Apply | |
dry_labels = [] | |
for effect in effects_to_apply: | |
# Normalize in-between effects | |
dry = self.normalize(effect(dry)) | |
dry_labels.append(ALL_EFFECTS.index(type(effect))) | |
# Apply effects_to_remove | |
# Shuffle effects if specified | |
if self.shuffle_removed_effects: | |
effect_indices = torch.randperm(len(self.effects_to_remove)) | |
else: | |
effect_indices = torch.arange(len(self.effects_to_remove)) | |
wet = torch.clone(dry) | |
r1 = self.num_removed_effects[0] | |
r2 = self.num_removed_effects[1] | |
num_removed_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int() | |
effect_indices = effect_indices[:num_removed_effects] | |
# Index in effect settings | |
effect_names_to_apply = [self.effects_to_remove[i] for i in effect_indices] | |
effects_to_apply = [self.effects[i] for i in effect_names_to_apply] | |
# Apply | |
wet_labels = [] | |
for effect in effects_to_apply: | |
# Normalize in-between effects | |
wet = self.normalize(effect(wet)) | |
wet_labels.append(ALL_EFFECTS.index(type(effect))) | |
wet_labels_tensor = torch.zeros(len(ALL_EFFECTS)) | |
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS)) | |
for label_idx in wet_labels: | |
wet_labels_tensor[label_idx] = 1.0 | |
for label_idx in dry_labels: | |
dry_labels_tensor[label_idx] = 1.0 | |
# Normalize | |
normalized_dry = self.normalize(dry) | |
normalized_wet = self.normalize(wet) | |
# Check STFT, pick different effects if necessary | |
if num_removed_effects == 0: | |
# No need to check if no effects removed | |
break | |
stft = self.mrstft(normalized_wet.unsqueeze(0), normalized_dry.unsqueeze(0)) | |
return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor | |
class InferenceDataset(Dataset): | |
def __init__(self, root: str, sample_rate: int, **kwargs): | |
self.root = Path(root) | |
self.sample_rate = sample_rate | |
self.clean_paths = sorted(list(self.root.glob("clean/*.wav"))) | |
self.effected_paths = sorted(list(self.root.glob("effected/*.wav"))) | |
def __len__(self) -> int: | |
return len(self.clean_paths) | |
def __getitem__(self, idx: int) -> torch.Tensor: | |
clean_path = self.clean_paths[idx] | |
effected_path = self.effected_paths[idx] | |
clean_audio, sr = torchaudio.load(clean_path) | |
clean = torchaudio.functional.resample(clean_audio, sr, self.sample_rate) | |
effected_audio, sr = torchaudio.load(effected_path) | |
effected = torchaudio.functional.resample(effected_audio, sr, self.sample_rate) | |
# Sum to mono | |
clean = torch.sum(clean, dim=0, keepdim=True) | |
effected = torch.sum(effected, dim=0, keepdim=True) | |
# Pad or trim effected to clean | |
if effected.shape[1] > clean.shape[1]: | |
effected = effected[:, : clean.shape[1]] | |
elif effected.shape[1] < clean.shape[1]: | |
pad_size = clean.shape[1] - effected.shape[1] | |
effected = torch.nn.functional.pad(effected, (0, pad_size)) | |
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS)) | |
wet_labels_tensor = torch.ones(len(ALL_EFFECTS)) | |
return effected, clean, dry_labels_tensor, wet_labels_tensor | |
class EffectDatamodule(pl.LightningDataModule): | |
def __init__( | |
self, | |
train_dataset, | |
val_dataset, | |
test_dataset, | |
*, | |
train_batch_size: int, | |
test_batch_size: int, | |
num_workers: int, | |
pin_memory: bool = False, | |
**kwargs: int, | |
) -> None: | |
super().__init__() | |
self.train_dataset = train_dataset | |
self.val_dataset = val_dataset | |
self.test_dataset = test_dataset | |
self.train_batch_size = train_batch_size | |
self.test_batch_size = test_batch_size | |
self.num_workers = num_workers | |
self.pin_memory = pin_memory | |
def setup(self, stage: Any = None) -> None: | |
pass | |
def train_dataloader(self) -> DataLoader: | |
return DataLoader( | |
dataset=self.train_dataset, | |
batch_size=self.train_batch_size, | |
num_workers=self.num_workers, | |
pin_memory=self.pin_memory, | |
shuffle=True, | |
) | |
def val_dataloader(self) -> DataLoader: | |
return DataLoader( | |
dataset=self.val_dataset, | |
batch_size=self.train_batch_size, | |
num_workers=self.num_workers, | |
pin_memory=self.pin_memory, | |
shuffle=False, | |
) | |
def test_dataloader(self) -> DataLoader: | |
return DataLoader( | |
dataset=self.test_dataset, | |
batch_size=self.test_batch_size, | |
num_workers=self.num_workers, | |
pin_memory=self.pin_memory, | |
shuffle=False, | |
) | |