Spaces:
Sleeping
Sleeping
File size: 25,674 Bytes
a3e84f7 7d6db8f a3e84f7 c7866f1 a89496d 9325b1e 7173e65 a3e84f7 279d167 476d640 a3e84f7 5e4e307 279d167 7173f20 14ae0ea 8cb3861 7173f20 279d167 a3e84f7 9f855cb a3e84f7 c7866f1 9f855cb bd1743b 9f855cb 9325b1e 9f855cb 9325b1e bd1743b c1b80c0 bd1743b 9f855cb bd1743b 9f855cb 9325b1e bd1743b 9f855cb 9325b1e 9f855cb b175ee9 279d167 507048e 279d167 507048e bd1743b e0a5f6f 93a34d1 9325b1e 8cb3861 8a3bb8f 8cb3861 8a3bb8f 8cb3861 7173e65 6990e4a e0a5f6f 7fc4de1 e0a5f6f 6990e4a d8d3e30 9325b1e e0a5f6f 8a3bb8f 476d640 279d167 7173f20 8cb3861 383ad82 8a93db1 383ad82 8a93db1 383ad82 8a3bb8f 8cb3861 279d167 c7866f1 9f855cb a3e84f7 c7866f1 57c446b c7866f1 9325b1e 7173e65 8125531 c7866f1 279d167 4f7d68b 279d167 c1b80c0 279d167 056a44f 279d167 9325b1e e0a5f6f 9325b1e 7bb4fe3 9325b1e 7173e65 9325b1e 7173e65 c7866f1 a3e84f7 7173e65 a3e84f7 e0a5f6f 8cb3861 8a3bb8f 8cb3861 4c773e2 8a3bb8f 93a34d1 8a3bb8f 93a34d1 8a3bb8f 8cb3861 93a34d1 8cb3861 c7866f1 8cb3861 4c773e2 8cb3861 a3e84f7 8a3bb8f 93a34d1 4c773e2 8cb3861 7173f20 64a6fed c1b80c0 a3e84f7 c7866f1 e0a5f6f 6da1b0d fb9ce8b 6da1b0d fb9ce8b 6da1b0d fb9ce8b 6da1b0d fb9ce8b 6da1b0d fb9ce8b 6da1b0d fb9ce8b 6da1b0d bd1743b e0a5f6f 8125531 e0a5f6f 507048e e0a5f6f 8125531 507048e e0a5f6f 507048e e0a5f6f 507048e e0a5f6f 8125531 568c3f1 8125531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
import os
import sys
import glob
import torch
import shutil
import torchaudio
import pytorch_lightning as pl
import random
from tqdm import tqdm
from pathlib import Path
from remfx import effects as effect_lib
from typing import Any, List, Dict
from torch.utils.data import Dataset, DataLoader
from remfx.utils import select_random_chunk
import multiprocessing
from auraloss.freq import MultiResolutionSTFTLoss
STFT_THRESH = 1e-3
ALL_EFFECTS = effect_lib.Pedalboard_Effects
vocalset_splits = {
"train": [
"male1",
"male2",
"male3",
"male4",
"male5",
"male6",
"male7",
"male8",
"male9",
"female1",
"female2",
"female3",
"female4",
"female5",
"female6",
"female7",
],
"val": ["male10", "female8"],
"test": ["male11", "female9"],
}
guitarset_splits = {"train": ["00", "01", "02", "03"], "val": ["04"], "test": ["05"]}
dsd_100_splits = {
"train": ["train"],
"val": ["val"],
"test": ["test"],
}
idmt_drums_splits = {
"train": ["WaveDrum02", "TechnoDrum01"],
"val": ["RealDrum01"],
"test": ["TechnoDrum02", "WaveDrum01"],
}
def locate_files(root: str, mode: str):
file_list = []
# ------------------------- VocalSet -------------------------
vocalset_dir = os.path.join(root, "VocalSet1-2")
if os.path.isdir(vocalset_dir):
# find all singer directories
singer_dirs = glob.glob(os.path.join(vocalset_dir, "data_by_singer", "*"))
singer_dirs = [
sd for sd in singer_dirs if os.path.basename(sd) in vocalset_splits[mode]
]
files = []
for singer_dir in singer_dirs:
files += glob.glob(os.path.join(singer_dir, "**", "**", "*.wav"))
print(f"Found {len(files)} files in VocalSet {mode}.")
file_list.append(sorted(files))
# ------------------------- GuitarSet -------------------------
guitarset_dir = os.path.join(root, "audio_mono-mic")
if os.path.isdir(guitarset_dir):
files = glob.glob(os.path.join(guitarset_dir, "*.wav"))
files = [
f
for f in files
if os.path.basename(f).split("_")[0] in guitarset_splits[mode]
]
print(f"Found {len(files)} files in GuitarSet {mode}.")
file_list.append(sorted(files))
# ------------------------- DSD100 ---------------------------------
dsd_100_dir = os.path.join(root, "DSD100/DSD100")
if os.path.isdir(dsd_100_dir):
files = glob.glob(
os.path.join(dsd_100_dir, mode, "**", "*.wav"),
recursive=True,
)
file_list.append(sorted(files))
print(f"Found {len(files)} files in DSD100 {mode}.")
# ------------------------- IDMT-SMT-DRUMS -------------------------
idmt_smt_drums_dir = os.path.join(root, "IDMT-SMT-DRUMS-V2")
if os.path.isdir(idmt_smt_drums_dir):
files = glob.glob(os.path.join(idmt_smt_drums_dir, "audio", "*.wav"))
files = [
f
for f in files
if os.path.basename(f).split("_")[0] in idmt_drums_splits[mode]
]
file_list.append(sorted(files))
print(f"Found {len(files)} files in IDMT-SMT-Drums {mode}.")
return file_list
def parallel_process_effects(
chunk_idx: int,
proc_root: str,
files: list,
chunk_size: int,
effects: list,
effects_to_keep: list,
num_kept_effects: tuple,
shuffle_kept_effects: bool,
effects_to_remove: list,
num_removed_effects: tuple,
shuffle_removed_effects: bool,
sample_rate: int,
target_lufs_db: float,
):
"""Note: This function has an issue with random seed. It may not fully randomize the effects."""
chunk = None
random_dataset_choice = random.choice(files)
while chunk is None:
random_file_choice = random.choice(random_dataset_choice)
chunk = select_random_chunk(random_file_choice, chunk_size, sample_rate)
# Sum to mono
if chunk.shape[0] > 1:
chunk = chunk.sum(0, keepdim=True)
dry = chunk
# loudness normalization
normalize = effect_lib.LoudnessNormalize(sample_rate, target_lufs_db=target_lufs_db)
# Apply Kept Effects
# Shuffle effects if specified
if shuffle_kept_effects:
effect_indices = torch.randperm(len(effects_to_keep))
else:
effect_indices = torch.arange(len(effects_to_keep))
r1 = num_kept_effects[0]
r2 = num_kept_effects[1]
num_kept_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int()
effect_indices = effect_indices[:num_kept_effects]
# Index in effect settings
effect_names_to_apply = [effects_to_keep[i] for i in effect_indices]
effects_to_apply = [effects[i] for i in effect_names_to_apply]
# Apply
dry_labels = []
for effect in effects_to_apply:
# Normalize in-between effects
dry = normalize(effect(dry))
dry_labels.append(ALL_EFFECTS.index(type(effect)))
# Apply effects_to_remove
# Shuffle effects if specified
if shuffle_removed_effects:
effect_indices = torch.randperm(len(effects_to_remove))
else:
effect_indices = torch.arange(len(effects_to_remove))
wet = torch.clone(dry)
r1 = num_removed_effects[0]
r2 = num_removed_effects[1]
num_removed_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int()
effect_indices = effect_indices[:num_removed_effects]
# Index in effect settings
effect_names_to_apply = [effects_to_remove[i] for i in effect_indices]
effects_to_apply = [effects[i] for i in effect_names_to_apply]
# Apply
wet_labels = []
for effect in effects_to_apply:
# Normalize in-between effects
wet = normalize(effect(wet))
wet_labels.append(ALL_EFFECTS.index(type(effect)))
wet_labels_tensor = torch.zeros(len(ALL_EFFECTS))
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))
for label_idx in wet_labels:
wet_labels_tensor[label_idx] = 1.0
for label_idx in dry_labels:
dry_labels_tensor[label_idx] = 1.0
# Normalize
normalized_dry = normalize(dry)
normalized_wet = normalize(wet)
output_dir = proc_root / str(chunk_idx)
output_dir.mkdir(exist_ok=True)
torchaudio.save(output_dir / "input.wav", normalized_wet, sample_rate)
torchaudio.save(output_dir / "target.wav", normalized_dry, sample_rate)
torch.save(dry_labels_tensor, output_dir / "dry_effects.pt")
torch.save(wet_labels_tensor, output_dir / "wet_effects.pt")
# return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor
class DynamicEffectDataset(Dataset):
def __init__(
self,
root: str,
sample_rate: int,
chunk_size: int = 262144,
total_chunks: int = 1000,
effect_modules: List[Dict[str, torch.nn.Module]] = None,
effects_to_keep: List[str] = None,
effects_to_remove: List[str] = None,
num_kept_effects: List[int] = [1, 5],
num_removed_effects: List[int] = [1, 5],
shuffle_kept_effects: bool = True,
shuffle_removed_effects: bool = False,
render_files: bool = True,
render_root: str = None,
mode: str = "train",
parallel: bool = False,
) -> None:
super().__init__()
self.chunks = []
self.song_idx = []
self.root = Path(root)
self.render_root = Path(render_root)
self.chunk_size = chunk_size
self.total_chunks = total_chunks
self.sample_rate = sample_rate
self.mode = mode
self.num_kept_effects = num_kept_effects
self.num_removed_effects = num_removed_effects
self.effects_to_keep = [] if effects_to_keep is None else effects_to_keep
self.effects_to_remove = [] if effects_to_remove is None else effects_to_remove
self.normalize = effect_lib.LoudnessNormalize(sample_rate, target_lufs_db=-20)
self.effects = effect_modules
self.shuffle_kept_effects = shuffle_kept_effects
self.shuffle_removed_effects = shuffle_removed_effects
effects_string = "_".join(
self.effects_to_keep
+ ["_"]
+ self.effects_to_remove
+ ["_"]
+ [str(x) for x in num_kept_effects]
+ ["_"]
+ [str(x) for x in num_removed_effects]
)
# self.validate_effect_input()
# self.proc_root = self.render_root / "processed" / effects_string / self.mode
self.parallel = parallel
self.files = locate_files(self.root, self.mode)
def process_effects(self, dry: torch.Tensor):
# Apply Kept Effects
# Shuffle effects if specified
if self.shuffle_kept_effects:
effect_indices = torch.randperm(len(self.effects_to_keep))
else:
effect_indices = torch.arange(len(self.effects_to_keep))
r1 = self.num_kept_effects[0]
r2 = self.num_kept_effects[1]
num_kept_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int()
effect_indices = effect_indices[:num_kept_effects]
# Index in effect settings
effect_names_to_apply = [self.effects_to_keep[i] for i in effect_indices]
effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
# Apply
dry_labels = []
for effect in effects_to_apply:
# Normalize in-between effects
dry = self.normalize(effect(dry))
dry_labels.append(ALL_EFFECTS.index(type(effect)))
# Apply effects_to_remove
# Shuffle effects if specified
if self.shuffle_removed_effects:
effect_indices = torch.randperm(len(self.effects_to_remove))
else:
effect_indices = torch.arange(len(self.effects_to_remove))
wet = torch.clone(dry)
r1 = self.num_removed_effects[0]
r2 = self.num_removed_effects[1]
num_removed_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int()
effect_indices = effect_indices[:num_removed_effects]
# Index in effect settings
effect_names_to_apply = [self.effects_to_remove[i] for i in effect_indices]
effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
# Apply
wet_labels = []
for effect in effects_to_apply:
# Normalize in-between effects
wet = self.normalize(effect(wet))
wet_labels.append(ALL_EFFECTS.index(type(effect)))
wet_labels_tensor = torch.zeros(len(ALL_EFFECTS))
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))
for label_idx in wet_labels:
wet_labels_tensor[label_idx] = 1.0
for label_idx in dry_labels:
dry_labels_tensor[label_idx] = 1.0
# Normalize
normalized_dry = self.normalize(dry)
normalized_wet = self.normalize(wet)
return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor
def __len__(self):
return self.total_chunks
def __getitem__(self, _: int):
chunk = None
random_dataset_choice = random.choice(self.files)
while chunk is None:
random_file_choice = random.choice(random_dataset_choice)
chunk = select_random_chunk(
random_file_choice, self.chunk_size, self.sample_rate
)
# Sum to mono
if chunk.shape[0] > 1:
chunk = chunk.sum(0, keepdim=True)
dry, wet, dry_effects, wet_effects = self.process_effects(chunk)
return wet, dry, dry_effects, wet_effects
class EffectDataset(Dataset):
def __init__(
self,
root: str,
sample_rate: int,
chunk_size: int = 262144,
total_chunks: int = 1000,
effect_modules: List[Dict[str, torch.nn.Module]] = None,
effects_to_keep: List[str] = None,
effects_to_remove: List[str] = None,
num_kept_effects: List[int] = [1, 5],
num_removed_effects: List[int] = [1, 5],
shuffle_kept_effects: bool = True,
shuffle_removed_effects: bool = False,
render_files: bool = True,
render_root: str = None,
mode: str = "train",
parallel: bool = False,
):
super().__init__()
self.chunks = []
self.song_idx = []
self.root = Path(root)
self.render_root = Path(render_root)
self.chunk_size = chunk_size
self.total_chunks = total_chunks
self.sample_rate = sample_rate
self.mode = mode
self.num_kept_effects = num_kept_effects
self.num_removed_effects = num_removed_effects
self.effects_to_keep = [] if effects_to_keep is None else effects_to_keep
self.effects_to_remove = [] if effects_to_remove is None else effects_to_remove
self.normalize = effect_lib.LoudnessNormalize(sample_rate, target_lufs_db=-20)
self.mrstft = MultiResolutionSTFTLoss(sample_rate=sample_rate)
self.effects = effect_modules
self.shuffle_kept_effects = shuffle_kept_effects
self.shuffle_removed_effects = shuffle_removed_effects
effects_string = "_".join(
self.effects_to_keep
+ ["_"]
+ self.effects_to_remove
+ ["_"]
+ [str(x) for x in num_kept_effects]
+ ["_"]
+ [str(x) for x in num_removed_effects]
)
self.validate_effect_input()
self.proc_root = self.render_root / "processed" / effects_string / self.mode
self.parallel = parallel
self.files = locate_files(self.root, self.mode)
if self.proc_root.exists() and len(list(self.proc_root.iterdir())) > 0:
print("Found processed files.")
if render_files:
re_render = input(
"WARNING: By default, will re-render files.\n"
"Set render_files=False to skip re-rendering.\n"
"Are you sure you want to re-render? (y/n): "
)
if re_render != "y":
sys.exit()
shutil.rmtree(self.proc_root)
print("Total datasets:", len(self.files))
print("Processing files...")
if render_files:
# Split audio file into chunks, resample, then apply random effects
self.proc_root.mkdir(parents=True, exist_ok=True)
if self.parallel:
items = [
(
chunk_idx,
self.proc_root,
self.files,
self.chunk_size,
self.effects,
self.effects_to_keep,
self.num_kept_effects,
self.shuffle_kept_effects,
self.effects_to_remove,
self.num_removed_effects,
self.shuffle_removed_effects,
self.sample_rate,
-20.0,
)
for chunk_idx in range(self.total_chunks)
]
with multiprocessing.Pool(processes=32) as pool:
pool.starmap(parallel_process_effects, items)
print(f"Done proccessing {self.total_chunks}", flush=True)
else:
for num_chunk in tqdm(range(self.total_chunks)):
chunk = None
random_dataset_choice = random.choice(self.files)
while chunk is None:
try:
random_file_choice = random.choice(random_dataset_choice)
except IndexError:
print("IndexError")
print(random_dataset_choice)
print(random_file_choice)
raise IndexError
chunk = select_random_chunk(
random_file_choice, self.chunk_size, self.sample_rate
)
# Sum to mono
if chunk.shape[0] > 1:
chunk = chunk.sum(0, keepdim=True)
dry, wet, dry_effects, wet_effects = self.process_effects(chunk)
output_dir = self.proc_root / str(num_chunk)
output_dir.mkdir(exist_ok=True)
torchaudio.save(output_dir / "input.wav", wet, self.sample_rate)
torchaudio.save(output_dir / "target.wav", dry, self.sample_rate)
torch.save(dry_effects, output_dir / "dry_effects.pt")
torch.save(wet_effects, output_dir / "wet_effects.pt")
print("Finished rendering")
else:
self.total_chunks = len(list(self.proc_root.iterdir()))
print("Total chunks:", self.total_chunks)
def __len__(self):
return self.total_chunks
def __getitem__(self, idx):
input_file = self.proc_root / str(idx) / "input.wav"
target_file = self.proc_root / str(idx) / "target.wav"
dry_effect_names = torch.load(self.proc_root / str(idx) / "dry_effects.pt")
wet_effect_names = torch.load(self.proc_root / str(idx) / "wet_effects.pt")
input, sr = torchaudio.load(input_file)
target, sr = torchaudio.load(target_file)
return (input, target, dry_effect_names, wet_effect_names)
def validate_effect_input(self):
for effect in self.effects.values():
if type(effect) not in ALL_EFFECTS:
raise ValueError(
f"Effect {effect} not found in ALL_EFFECTS. "
f"Please choose from {ALL_EFFECTS}"
)
for effect in self.effects_to_keep:
if effect not in self.effects.keys():
raise ValueError(
f"Effect {effect} not found in self.effects. "
f"Please choose from {self.effects.keys()}"
)
for effect in self.effects_to_remove:
if effect not in self.effects.keys():
raise ValueError(
f"Effect {effect} not found in self.effects. "
f"Please choose from {self.effects.keys()}"
)
kept_str = "randomly" if self.shuffle_kept_effects else "in order"
rem_str = "randomly" if self.shuffle_removed_effects else "in order"
if self.num_kept_effects[0] > self.num_kept_effects[1]:
raise ValueError(
f"num_kept_effects must be a tuple of (min, max). "
f"Got {self.num_kept_effects}"
)
if self.num_kept_effects[0] == self.num_kept_effects[1]:
num_kept_str = f"{self.num_kept_effects[0]}"
else:
num_kept_str = (
f"Between {self.num_kept_effects[0]}-{self.num_kept_effects[1]}"
)
if self.num_removed_effects[0] > self.num_removed_effects[1]:
raise ValueError(
f"num_removed_effects must be a tuple of (min, max). "
f"Got {self.num_removed_effects}"
)
if self.num_removed_effects[0] == self.num_removed_effects[1]:
num_rem_str = f"{self.num_removed_effects[0]}"
else:
num_rem_str = (
f"Between {self.num_removed_effects[0]}-{self.num_removed_effects[1]}"
)
rem_fx = self.effects_to_remove
kept_fx = self.effects_to_keep
print(
f"Effect Summary: \n"
f"Apply kept effects: {kept_fx} ({num_kept_str}, chosen {kept_str}) -> Dry\n"
f"Apply remove effects: {rem_fx} ({num_rem_str}, chosen {rem_str}) -> Wet\n"
)
def process_effects(self, dry: torch.Tensor):
# Apply Kept Effects
# Shuffle effects if specified
if self.shuffle_kept_effects:
effect_indices = torch.randperm(len(self.effects_to_keep))
else:
effect_indices = torch.arange(len(self.effects_to_keep))
r1 = self.num_kept_effects[0]
r2 = self.num_kept_effects[1]
num_kept_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int()
effect_indices = effect_indices[:num_kept_effects]
# Index in effect settings
effect_names_to_apply = [self.effects_to_keep[i] for i in effect_indices]
effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
# stft comparison
stft = 0
while stft < STFT_THRESH:
# Apply
dry_labels = []
for effect in effects_to_apply:
# Normalize in-between effects
dry = self.normalize(effect(dry))
dry_labels.append(ALL_EFFECTS.index(type(effect)))
# Apply effects_to_remove
# Shuffle effects if specified
if self.shuffle_removed_effects:
effect_indices = torch.randperm(len(self.effects_to_remove))
else:
effect_indices = torch.arange(len(self.effects_to_remove))
wet = torch.clone(dry)
r1 = self.num_removed_effects[0]
r2 = self.num_removed_effects[1]
num_removed_effects = torch.round((r1 - r2) * torch.rand(1) + r2).int()
effect_indices = effect_indices[:num_removed_effects]
# Index in effect settings
effect_names_to_apply = [self.effects_to_remove[i] for i in effect_indices]
effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
# Apply
wet_labels = []
for effect in effects_to_apply:
# Normalize in-between effects
wet = self.normalize(effect(wet))
wet_labels.append(ALL_EFFECTS.index(type(effect)))
wet_labels_tensor = torch.zeros(len(ALL_EFFECTS))
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))
for label_idx in wet_labels:
wet_labels_tensor[label_idx] = 1.0
for label_idx in dry_labels:
dry_labels_tensor[label_idx] = 1.0
# Normalize
normalized_dry = self.normalize(dry)
normalized_wet = self.normalize(wet)
# Check STFT, pick different effects if necessary
if num_removed_effects == 0:
# No need to check if no effects removed
break
stft = self.mrstft(normalized_wet.unsqueeze(0), normalized_dry.unsqueeze(0))
return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor
class InferenceDataset(Dataset):
def __init__(self, root: str, sample_rate: int, **kwargs):
self.root = Path(root)
self.sample_rate = sample_rate
self.clean_paths = sorted(list(self.root.glob("clean/*.wav")))
self.effected_paths = sorted(list(self.root.glob("effected/*.wav")))
def __len__(self) -> int:
return len(self.clean_paths)
def __getitem__(self, idx: int) -> torch.Tensor:
clean_path = self.clean_paths[idx]
effected_path = self.effected_paths[idx]
clean_audio, sr = torchaudio.load(clean_path)
clean = torchaudio.functional.resample(clean_audio, sr, self.sample_rate)
effected_audio, sr = torchaudio.load(effected_path)
effected = torchaudio.functional.resample(effected_audio, sr, self.sample_rate)
# Sum to mono
clean = torch.sum(clean, dim=0, keepdim=True)
effected = torch.sum(effected, dim=0, keepdim=True)
# Pad or trim effected to clean
if effected.shape[1] > clean.shape[1]:
effected = effected[:, : clean.shape[1]]
elif effected.shape[1] < clean.shape[1]:
pad_size = clean.shape[1] - effected.shape[1]
effected = torch.nn.functional.pad(effected, (0, pad_size))
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))
wet_labels_tensor = torch.ones(len(ALL_EFFECTS))
return effected, clean, dry_labels_tensor, wet_labels_tensor
class EffectDatamodule(pl.LightningDataModule):
def __init__(
self,
train_dataset,
val_dataset,
test_dataset,
*,
train_batch_size: int,
test_batch_size: int,
num_workers: int,
pin_memory: bool = False,
**kwargs: int,
) -> None:
super().__init__()
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.train_batch_size = train_batch_size
self.test_batch_size = test_batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
def setup(self, stage: Any = None) -> None:
pass
def train_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.train_dataset,
batch_size=self.train_batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=True,
)
def val_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.val_dataset,
batch_size=self.train_batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
)
def test_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.test_dataset,
batch_size=self.test_batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
)
|