Spaces:
Sleeping
Sleeping
import torch | |
import torchaudio | |
import torch.nn as nn | |
import wav2clip_hear | |
import panns_hear | |
import torch.nn.functional as F | |
from remfx.utils import init_bn, init_layer | |
class PANNs(torch.nn.Module): | |
def __init__( | |
self, num_classes: int, sample_rate: float, hidden_dim: int = 256 | |
) -> None: | |
super().__init__() | |
self.num_classes = num_classes | |
self.model = panns_hear.load_model("hear2021-panns_hear.pth") | |
self.resample = torchaudio.transforms.Resample( | |
orig_freq=sample_rate, new_freq=32000 | |
) | |
self.proj = torch.nn.Sequential( | |
torch.nn.Linear(2048, hidden_dim), | |
torch.nn.ReLU(), | |
torch.nn.Linear(hidden_dim, hidden_dim), | |
torch.nn.ReLU(), | |
torch.nn.Linear(hidden_dim, num_classes), | |
) | |
def forward(self, x: torch.Tensor, **kwargs): | |
with torch.no_grad(): | |
x = self.resample(x) | |
embed = panns_hear.get_scene_embeddings(x.view(x.shape[0], -1), self.model) | |
return self.proj(embed) | |
class Wav2CLIP(nn.Module): | |
def __init__( | |
self, | |
num_classes: int, | |
sample_rate: float, | |
hidden_dim: int = 256, | |
) -> None: | |
super().__init__() | |
self.num_classes = num_classes | |
self.model = wav2clip_hear.load_model("") | |
self.resample = torchaudio.transforms.Resample( | |
orig_freq=sample_rate, new_freq=16000 | |
) | |
self.proj = torch.nn.Sequential( | |
torch.nn.Linear(512, hidden_dim), | |
torch.nn.ReLU(), | |
torch.nn.Linear(hidden_dim, hidden_dim), | |
torch.nn.ReLU(), | |
torch.nn.Linear(hidden_dim, num_classes), | |
) | |
def forward(self, x: torch.Tensor, **kwargs): | |
with torch.no_grad(): | |
x = self.resample(x) | |
embed = wav2clip_hear.get_scene_embeddings( | |
x.view(x.shape[0], -1), self.model | |
) | |
return self.proj(embed) | |
# adapted from https://github.com/qiuqiangkong/audioset_tagging_cnn/blob/master/pytorch/models.py | |
class Cnn14(nn.Module): | |
def __init__( | |
self, | |
num_classes: int, | |
sample_rate: float, | |
model_sample_rate: float, | |
n_fft: int = 1024, | |
hop_length: int = 256, | |
n_mels: int = 128, | |
specaugment: bool = False, | |
): | |
super().__init__() | |
self.num_classes = num_classes | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.sample_rate = sample_rate | |
self.model_sample_rate = model_sample_rate | |
self.specaugment = specaugment | |
window = torch.hann_window(n_fft) | |
self.register_buffer("window", window) | |
self.melspec = torchaudio.transforms.MelSpectrogram( | |
model_sample_rate, | |
n_fft, | |
hop_length=hop_length, | |
n_mels=n_mels, | |
) | |
self.bn0 = nn.BatchNorm2d(n_mels) | |
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64) | |
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128) | |
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256) | |
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512) | |
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024) | |
self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048) | |
self.fc1 = nn.Linear(2048, 2048, bias=True) | |
self.heads = torch.nn.ModuleList() | |
for _ in range(num_classes): | |
self.heads.append(nn.Linear(2048, 1, bias=True)) | |
self.init_weight() | |
if sample_rate != model_sample_rate: | |
self.resample = torchaudio.transforms.Resample( | |
orig_freq=sample_rate, new_freq=model_sample_rate | |
) | |
if self.specaugment: | |
self.freq_mask = torchaudio.transforms.FrequencyMasking(64, True) | |
self.time_mask = torchaudio.transforms.TimeMasking(128, True) | |
def init_weight(self): | |
init_bn(self.bn0) | |
init_layer(self.fc1) | |
def forward(self, x: torch.Tensor, train: bool = False): | |
""" | |
Input: (batch_size, data_length)""" | |
if self.sample_rate != self.model_sample_rate: | |
x = self.resample(x) | |
x = self.melspec(x) | |
if self.specaugment and train: | |
x = self.freq_mask(x) | |
x = self.time_mask(x) | |
# apply standardization | |
x = (x - x.mean(dim=(2, 3), keepdim=True)) / x.std(dim=(2, 3), keepdim=True) | |
x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=train) | |
x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=train) | |
x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=train) | |
x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=train) | |
x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=train) | |
x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg") | |
x = F.dropout(x, p=0.2, training=train) | |
x = torch.mean(x, dim=3) | |
(x1, _) = torch.max(x, dim=2) | |
x2 = torch.mean(x, dim=2) | |
x = x1 + x2 | |
x = F.dropout(x, p=0.5, training=train) | |
x = F.relu_(self.fc1(x)) | |
outputs = [] | |
for head in self.heads: | |
outputs.append(torch.sigmoid(head(x))) | |
return outputs | |
class ConvBlock(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(ConvBlock, self).__init__() | |
self.conv1 = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
bias=False, | |
) | |
self.conv2 = nn.Conv2d( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
bias=False, | |
) | |
self.bn1 = nn.BatchNorm2d(out_channels) | |
self.bn2 = nn.BatchNorm2d(out_channels) | |
self.init_weight() | |
def init_weight(self): | |
init_layer(self.conv1) | |
init_layer(self.conv2) | |
init_bn(self.bn1) | |
init_bn(self.bn2) | |
def forward(self, input, pool_size=(2, 2), pool_type="avg"): | |
x = input | |
x = F.relu_(self.bn1(self.conv1(x))) | |
x = F.relu_(self.bn2(self.conv2(x))) | |
if pool_type == "max": | |
x = F.max_pool2d(x, kernel_size=pool_size) | |
elif pool_type == "avg": | |
x = F.avg_pool2d(x, kernel_size=pool_size) | |
elif pool_type == "avg+max": | |
x1 = F.avg_pool2d(x, kernel_size=pool_size) | |
x2 = F.max_pool2d(x, kernel_size=pool_size) | |
x = x1 + x2 | |
else: | |
raise Exception("Incorrect argument!") | |
return x | |