File size: 6,980 Bytes
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4fcfb
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4fcfb
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f23c3
d8f7979
 
 
d254115
 
 
 
 
 
 
 
3c4fcfb
 
 
 
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f23c3
 
568c3f1
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8f7979
 
 
 
 
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
568c3f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import torchaudio
import torch.nn as nn

import wav2clip_hear
import panns_hear


import torch.nn.functional as F
from remfx.utils import init_bn, init_layer


class PANNs(torch.nn.Module):
    def __init__(
        self, num_classes: int, sample_rate: float, hidden_dim: int = 256
    ) -> None:
        super().__init__()
        self.num_classes = num_classes
        self.model = panns_hear.load_model("hear2021-panns_hear.pth")
        self.resample = torchaudio.transforms.Resample(
            orig_freq=sample_rate, new_freq=32000
        )
        self.proj = torch.nn.Sequential(
            torch.nn.Linear(2048, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, num_classes),
        )

    def forward(self, x: torch.Tensor, **kwargs):
        with torch.no_grad():
            x = self.resample(x)
            embed = panns_hear.get_scene_embeddings(x.view(x.shape[0], -1), self.model)
        return self.proj(embed)


class Wav2CLIP(nn.Module):
    def __init__(
        self,
        num_classes: int,
        sample_rate: float,
        hidden_dim: int = 256,
    ) -> None:
        super().__init__()
        self.num_classes = num_classes
        self.model = wav2clip_hear.load_model("")
        self.resample = torchaudio.transforms.Resample(
            orig_freq=sample_rate, new_freq=16000
        )
        self.proj = torch.nn.Sequential(
            torch.nn.Linear(512, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, num_classes),
        )

    def forward(self, x: torch.Tensor, **kwargs):
        with torch.no_grad():
            x = self.resample(x)
            embed = wav2clip_hear.get_scene_embeddings(
                x.view(x.shape[0], -1), self.model
            )
        return self.proj(embed)


# adapted from https://github.com/qiuqiangkong/audioset_tagging_cnn/blob/master/pytorch/models.py


class Cnn14(nn.Module):
    def __init__(
        self,
        num_classes: int,
        sample_rate: float,
        model_sample_rate: float,
        n_fft: int = 1024,
        hop_length: int = 256,
        n_mels: int = 128,
        specaugment: bool = False,
    ):
        super().__init__()
        self.num_classes = num_classes
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.sample_rate = sample_rate
        self.model_sample_rate = model_sample_rate
        self.specaugment = specaugment

        window = torch.hann_window(n_fft)
        self.register_buffer("window", window)

        self.melspec = torchaudio.transforms.MelSpectrogram(
            model_sample_rate,
            n_fft,
            hop_length=hop_length,
            n_mels=n_mels,
        )

        self.bn0 = nn.BatchNorm2d(n_mels)

        self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
        self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
        self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
        self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
        self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
        self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)

        self.fc1 = nn.Linear(2048, 2048, bias=True)

        self.heads = torch.nn.ModuleList()
        for _ in range(num_classes):
            self.heads.append(nn.Linear(2048, 1, bias=True))

        self.init_weight()

        if sample_rate != model_sample_rate:
            self.resample = torchaudio.transforms.Resample(
                orig_freq=sample_rate, new_freq=model_sample_rate
            )

        if self.specaugment:
            self.freq_mask = torchaudio.transforms.FrequencyMasking(64, True)
            self.time_mask = torchaudio.transforms.TimeMasking(128, True)

    def init_weight(self):
        init_bn(self.bn0)
        init_layer(self.fc1)

    def forward(self, x: torch.Tensor, train: bool = False):
        """
        Input: (batch_size, data_length)"""

        if self.sample_rate != self.model_sample_rate:
            x = self.resample(x)

        x = self.melspec(x)

        if self.specaugment and train:
            x = self.freq_mask(x)
            x = self.time_mask(x)

        # apply standardization
        x = (x - x.mean(dim=(2, 3), keepdim=True)) / x.std(dim=(2, 3), keepdim=True)

        x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = torch.mean(x, dim=3)

        (x1, _) = torch.max(x, dim=2)
        x2 = torch.mean(x, dim=2)
        x = x1 + x2
        x = F.dropout(x, p=0.5, training=train)
        x = F.relu_(self.fc1(x))

        outputs = []
        for head in self.heads:
            outputs.append(torch.sigmoid(head(x)))

        return outputs


class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ConvBlock, self).__init__()

        self.conv1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=(3, 3),
            stride=(1, 1),
            padding=(1, 1),
            bias=False,
        )

        self.conv2 = nn.Conv2d(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=(3, 3),
            stride=(1, 1),
            padding=(1, 1),
            bias=False,
        )

        self.bn1 = nn.BatchNorm2d(out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.init_weight()

    def init_weight(self):
        init_layer(self.conv1)
        init_layer(self.conv2)
        init_bn(self.bn1)
        init_bn(self.bn2)

    def forward(self, input, pool_size=(2, 2), pool_type="avg"):
        x = input
        x = F.relu_(self.bn1(self.conv1(x)))
        x = F.relu_(self.bn2(self.conv2(x)))
        if pool_type == "max":
            x = F.max_pool2d(x, kernel_size=pool_size)
        elif pool_type == "avg":
            x = F.avg_pool2d(x, kernel_size=pool_size)
        elif pool_type == "avg+max":
            x1 = F.avg_pool2d(x, kernel_size=pool_size)
            x2 = F.max_pool2d(x, kernel_size=pool_size)
            x = x1 + x2
        else:
            raise Exception("Incorrect argument!")

        return x