RemFx / remfx /datasets.py
mattricesound's picture
Init dcunet and dptnet
7d6f241
raw
history blame
11.1 kB
import os
import sys
import glob
import torch
import shutil
import torchaudio
import pytorch_lightning as pl
import torch.nn.functional as F
from tqdm import tqdm
from pathlib import Path
from remfx import effects
from ordered_set import OrderedSet
from typing import Any, List, Dict
from torch.utils.data import Dataset, DataLoader
from remfx.utils import create_sequential_chunks
# https://zenodo.org/record/1193957 -> VocalSet
ALL_EFFECTS = effects.Pedalboard_Effects
singer_splits = {
"train": [
"male1",
"male2",
"male3",
"male4",
"male5",
"male6",
"male7",
"male8",
"male9",
"female1",
"female2",
"female3",
"female4",
"female5",
"female6",
"female7",
],
"val": ["male10", "female8"],
"test": ["male11", "female9"],
}
class VocalSet(Dataset):
def __init__(
self,
root: str,
sample_rate: int,
chunk_size: int = 262144,
effect_modules: List[Dict[str, torch.nn.Module]] = None,
effects_to_use: List[str] = None,
effects_to_remove: List[str] = None,
max_kept_effects: int = -1,
max_removed_effects: int = 1,
shuffle_kept_effects: bool = True,
shuffle_removed_effects: bool = False,
render_files: bool = True,
render_root: str = None,
mode: str = "train",
):
super().__init__()
self.chunks = []
self.song_idx = []
self.root = Path(root)
self.render_root = Path(render_root)
self.chunk_size = chunk_size
self.sample_rate = sample_rate
self.mode = mode
self.max_kept_effects = max_kept_effects
self.max_removed_effects = max_removed_effects
self.effects_to_use = effects_to_use
self.effects_to_remove = effects_to_remove
self.normalize = effects.LoudnessNormalize(sample_rate, target_lufs_db=-20)
self.effects = effect_modules
self.shuffle_kept_effects = shuffle_kept_effects
self.shuffle_removed_effects = shuffle_removed_effects
effects_string = "_".join(self.effects_to_use + ["_"] + self.effects_to_remove)
self.effects_to_keep = self.validate_effect_input()
self.proc_root = self.render_root / "processed" / effects_string / self.mode
# find all singer directories
singer_dirs = glob.glob(os.path.join(self.root, "data_by_singer", "*"))
singer_dirs = [
sd for sd in singer_dirs if os.path.basename(sd) in singer_splits[mode]
]
self.files = []
for singer_dir in singer_dirs:
self.files += glob.glob(os.path.join(singer_dir, "**", "**", "*.wav"))
self.files = sorted(self.files)
if self.proc_root.exists() and len(list(self.proc_root.iterdir())) > 0:
print("Found processed files.")
if render_files:
re_render = input(
"WARNING: By default, will re-render files.\n"
"Set render_files=False to skip re-rendering.\n"
"Are you sure you want to re-render? (y/n): "
)
if re_render != "y":
sys.exit()
shutil.rmtree(self.proc_root)
self.num_chunks = 0
print("Total files:", len(self.files))
print("Processing files...")
if render_files:
# Split audio file into chunks, resample, then apply random effects
self.proc_root.mkdir(parents=True, exist_ok=True)
for audio_file in tqdm(self.files, total=len(self.files)):
chunks, orig_sr = create_sequential_chunks(audio_file, self.chunk_size)
for chunk in chunks:
resampled_chunk = torchaudio.functional.resample(
chunk, orig_sr, sample_rate
)
if resampled_chunk.shape[-1] < chunk_size:
# Skip if chunk is too small
continue
dry, wet, dry_effects, wet_effects = self.process_effects(
resampled_chunk
)
output_dir = self.proc_root / str(self.num_chunks)
output_dir.mkdir(exist_ok=True)
torchaudio.save(output_dir / "input.wav", wet, self.sample_rate)
torchaudio.save(output_dir / "target.wav", dry, self.sample_rate)
torch.save(dry_effects, output_dir / "dry_effects.pt")
torch.save(wet_effects, output_dir / "wet_effects.pt")
self.num_chunks += 1
else:
self.num_chunks = len(list(self.proc_root.iterdir()))
print(
f"Found {len(self.files)} {self.mode} files .\n"
f"Total chunks: {self.num_chunks}"
)
def __len__(self):
return self.num_chunks
def __getitem__(self, idx):
input_file = self.proc_root / str(idx) / "input.wav"
target_file = self.proc_root / str(idx) / "target.wav"
dry_effect_names = torch.load(self.proc_root / str(idx) / "dry_effects.pt")
wet_effect_names = torch.load(self.proc_root / str(idx) / "wet_effects.pt")
input, sr = torchaudio.load(input_file)
target, sr = torchaudio.load(target_file)
return (input, target, dry_effect_names, wet_effect_names)
def validate_effect_input(self):
for effect in self.effects.values():
if type(effect) not in ALL_EFFECTS:
raise ValueError(
f"Effect {effect} not found in ALL_EFFECTS. "
f"Please choose from {ALL_EFFECTS}"
)
for effect in self.effects_to_use:
if effect not in self.effects.keys():
raise ValueError(
f"Effect {effect} not found in self.effects. "
f"Please choose from {self.effects.keys()}"
)
for effect in self.effects_to_remove:
if effect not in self.effects.keys():
raise ValueError(
f"Effect {effect} not found in self.effects. "
f"Please choose from {self.effects.keys()}"
)
kept_fx = list(
OrderedSet(self.effects_to_use) - OrderedSet(self.effects_to_remove)
)
kept_str = "randomly" if self.shuffle_kept_effects else "in order"
rem_fx = self.effects_to_remove
rem_str = "randomly" if self.shuffle_removed_effects else "in order"
if self.max_kept_effects == -1:
num_kept_str = len(kept_fx)
else:
num_kept_str = f"Up to {self.max_kept_effects}"
if self.max_removed_effects == -1:
num_rem_str = len(rem_fx)
else:
num_rem_str = f"Up to {self.max_removed_effects}"
print(
f"Effect Summary: \n"
f"Apply kept effects: {kept_fx} ({num_kept_str}, chosen {kept_str}) -> Dry\n"
f"Apply remove effects: {rem_fx} ({num_rem_str}, chosen {rem_str}) -> Wet\n"
)
return kept_fx
def process_effects(self, dry: torch.Tensor):
# Apply Kept Effects
# Shuffle effects if specified
if self.shuffle_kept_effects:
effect_indices = torch.randperm(len(self.effects_to_keep))
else:
effect_indices = torch.arange(len(self.effects_to_keep))
# Up to max_kept_effects
if self.max_kept_effects != -1:
num_kept_effects = int(torch.rand(1).item() * (self.max_kept_effects)) + 1
else:
num_kept_effects = len(self.effects_to_keep)
effect_indices = effect_indices[:num_kept_effects]
# Index in effect settings
effect_names_to_apply = [self.effects_to_keep[i] for i in effect_indices]
effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
# Apply
dry_labels = []
for effect in effects_to_apply:
dry = effect(dry)
dry_labels.append(ALL_EFFECTS.index(type(effect)))
# Apply effects_to_remove
# Shuffle effects if specified
wet = torch.clone(dry)
if self.shuffle_removed_effects:
effect_indices = torch.randperm(len(self.effects_to_remove))
else:
effect_indices = torch.arange(len(self.effects_to_remove))
# Up to max_removed_effects
if self.max_removed_effects != -1:
num_kept_effects = int(torch.rand(1).item() * (self.max_removed_effects))
else:
num_kept_effects = len(self.effects_to_remove)
effect_indices = effect_indices[: self.max_removed_effects]
# Index in effect settings
effect_names_to_apply = [self.effects_to_remove[i] for i in effect_indices]
effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
# Apply
wet_labels = []
for effect in effects_to_apply:
wet = effect(wet)
wet_labels.append(ALL_EFFECTS.index(type(effect)))
wet_labels_tensor = torch.zeros(len(ALL_EFFECTS))
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))
for label_idx in wet_labels:
wet_labels_tensor[label_idx] = 1.0
for label_idx in dry_labels:
dry_labels_tensor[label_idx] = 1.0
# Normalize
normalized_dry = self.normalize(dry)
normalized_wet = self.normalize(wet)
return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor
class VocalSetDatamodule(pl.LightningDataModule):
def __init__(
self,
train_dataset,
val_dataset,
test_dataset,
*,
batch_size: int,
num_workers: int,
pin_memory: bool = False,
**kwargs: int,
) -> None:
super().__init__()
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
def setup(self, stage: Any = None) -> None:
pass
def train_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.train_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=True,
)
def val_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.val_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
)
def test_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.test_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
)