Spaces:
Sleeping
Sleeping
File size: 11,056 Bytes
a3e84f7 7d6db8f a3e84f7 c7866f1 a89496d a3e84f7 7173e65 a3e84f7 f91cab1 a3e84f7 14ae0ea 8cb3861 e0a5f6f 14ae0ea c7866f1 a3e84f7 c7866f1 b175ee9 e0a5f6f 93a34d1 8cb3861 93a34d1 8cb3861 7173e65 6990e4a e0a5f6f 6990e4a d8d3e30 e0a5f6f 8cb3861 4c773e2 8cb3861 e0a5f6f 8cb3861 c7866f1 a3e84f7 c7866f1 57c446b c7866f1 7173e65 8125531 c7866f1 8125531 d8d3e30 7173e65 d8d3e30 4a7a6b8 c7866f1 a3e84f7 c7866f1 7173e65 a3e84f7 7173e65 e0a5f6f c7866f1 7bb4fe3 7173e65 c7866f1 a3e84f7 7173e65 a3e84f7 e0a5f6f 8cb3861 93a34d1 8cb3861 4c773e2 93a34d1 8cb3861 93a34d1 8cb3861 c7866f1 8cb3861 4c773e2 8cb3861 a3e84f7 4c773e2 93a34d1 a3e84f7 4c773e2 8cb3861 4c773e2 a3e84f7 8cb3861 a3e84f7 8cb3861 4c773e2 fe64756 8cb3861 4c773e2 93a34d1 a3e84f7 93a34d1 4c773e2 8cb3861 4c773e2 a3e84f7 8cb3861 a3e84f7 c7866f1 7d6f241 a3e84f7 c7866f1 e0a5f6f 8125531 e0a5f6f 8125531 e0a5f6f 8125531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import os
import sys
import glob
import torch
import shutil
import torchaudio
import pytorch_lightning as pl
import torch.nn.functional as F
from tqdm import tqdm
from pathlib import Path
from remfx import effects
from ordered_set import OrderedSet
from typing import Any, List, Dict
from torch.utils.data import Dataset, DataLoader
from remfx.utils import create_sequential_chunks
# https://zenodo.org/record/1193957 -> VocalSet
ALL_EFFECTS = effects.Pedalboard_Effects
singer_splits = {
"train": [
"male1",
"male2",
"male3",
"male4",
"male5",
"male6",
"male7",
"male8",
"male9",
"female1",
"female2",
"female3",
"female4",
"female5",
"female6",
"female7",
],
"val": ["male10", "female8"],
"test": ["male11", "female9"],
}
class VocalSet(Dataset):
def __init__(
self,
root: str,
sample_rate: int,
chunk_size: int = 262144,
effect_modules: List[Dict[str, torch.nn.Module]] = None,
effects_to_use: List[str] = None,
effects_to_remove: List[str] = None,
max_kept_effects: int = -1,
max_removed_effects: int = 1,
shuffle_kept_effects: bool = True,
shuffle_removed_effects: bool = False,
render_files: bool = True,
render_root: str = None,
mode: str = "train",
):
super().__init__()
self.chunks = []
self.song_idx = []
self.root = Path(root)
self.render_root = Path(render_root)
self.chunk_size = chunk_size
self.sample_rate = sample_rate
self.mode = mode
self.max_kept_effects = max_kept_effects
self.max_removed_effects = max_removed_effects
self.effects_to_use = effects_to_use
self.effects_to_remove = effects_to_remove
self.normalize = effects.LoudnessNormalize(sample_rate, target_lufs_db=-20)
self.effects = effect_modules
self.shuffle_kept_effects = shuffle_kept_effects
self.shuffle_removed_effects = shuffle_removed_effects
effects_string = "_".join(self.effects_to_use + ["_"] + self.effects_to_remove)
self.effects_to_keep = self.validate_effect_input()
self.proc_root = self.render_root / "processed" / effects_string / self.mode
# find all singer directories
singer_dirs = glob.glob(os.path.join(self.root, "data_by_singer", "*"))
singer_dirs = [
sd for sd in singer_dirs if os.path.basename(sd) in singer_splits[mode]
]
self.files = []
for singer_dir in singer_dirs:
self.files += glob.glob(os.path.join(singer_dir, "**", "**", "*.wav"))
self.files = sorted(self.files)
if self.proc_root.exists() and len(list(self.proc_root.iterdir())) > 0:
print("Found processed files.")
if render_files:
re_render = input(
"WARNING: By default, will re-render files.\n"
"Set render_files=False to skip re-rendering.\n"
"Are you sure you want to re-render? (y/n): "
)
if re_render != "y":
sys.exit()
shutil.rmtree(self.proc_root)
self.num_chunks = 0
print("Total files:", len(self.files))
print("Processing files...")
if render_files:
# Split audio file into chunks, resample, then apply random effects
self.proc_root.mkdir(parents=True, exist_ok=True)
for audio_file in tqdm(self.files, total=len(self.files)):
chunks, orig_sr = create_sequential_chunks(audio_file, self.chunk_size)
for chunk in chunks:
resampled_chunk = torchaudio.functional.resample(
chunk, orig_sr, sample_rate
)
if resampled_chunk.shape[-1] < chunk_size:
# Skip if chunk is too small
continue
dry, wet, dry_effects, wet_effects = self.process_effects(
resampled_chunk
)
output_dir = self.proc_root / str(self.num_chunks)
output_dir.mkdir(exist_ok=True)
torchaudio.save(output_dir / "input.wav", wet, self.sample_rate)
torchaudio.save(output_dir / "target.wav", dry, self.sample_rate)
torch.save(dry_effects, output_dir / "dry_effects.pt")
torch.save(wet_effects, output_dir / "wet_effects.pt")
self.num_chunks += 1
else:
self.num_chunks = len(list(self.proc_root.iterdir()))
print(
f"Found {len(self.files)} {self.mode} files .\n"
f"Total chunks: {self.num_chunks}"
)
def __len__(self):
return self.num_chunks
def __getitem__(self, idx):
input_file = self.proc_root / str(idx) / "input.wav"
target_file = self.proc_root / str(idx) / "target.wav"
dry_effect_names = torch.load(self.proc_root / str(idx) / "dry_effects.pt")
wet_effect_names = torch.load(self.proc_root / str(idx) / "wet_effects.pt")
input, sr = torchaudio.load(input_file)
target, sr = torchaudio.load(target_file)
return (input, target, dry_effect_names, wet_effect_names)
def validate_effect_input(self):
for effect in self.effects.values():
if type(effect) not in ALL_EFFECTS:
raise ValueError(
f"Effect {effect} not found in ALL_EFFECTS. "
f"Please choose from {ALL_EFFECTS}"
)
for effect in self.effects_to_use:
if effect not in self.effects.keys():
raise ValueError(
f"Effect {effect} not found in self.effects. "
f"Please choose from {self.effects.keys()}"
)
for effect in self.effects_to_remove:
if effect not in self.effects.keys():
raise ValueError(
f"Effect {effect} not found in self.effects. "
f"Please choose from {self.effects.keys()}"
)
kept_fx = list(
OrderedSet(self.effects_to_use) - OrderedSet(self.effects_to_remove)
)
kept_str = "randomly" if self.shuffle_kept_effects else "in order"
rem_fx = self.effects_to_remove
rem_str = "randomly" if self.shuffle_removed_effects else "in order"
if self.max_kept_effects == -1:
num_kept_str = len(kept_fx)
else:
num_kept_str = f"Up to {self.max_kept_effects}"
if self.max_removed_effects == -1:
num_rem_str = len(rem_fx)
else:
num_rem_str = f"Up to {self.max_removed_effects}"
print(
f"Effect Summary: \n"
f"Apply kept effects: {kept_fx} ({num_kept_str}, chosen {kept_str}) -> Dry\n"
f"Apply remove effects: {rem_fx} ({num_rem_str}, chosen {rem_str}) -> Wet\n"
)
return kept_fx
def process_effects(self, dry: torch.Tensor):
# Apply Kept Effects
# Shuffle effects if specified
if self.shuffle_kept_effects:
effect_indices = torch.randperm(len(self.effects_to_keep))
else:
effect_indices = torch.arange(len(self.effects_to_keep))
# Up to max_kept_effects
if self.max_kept_effects != -1:
num_kept_effects = int(torch.rand(1).item() * (self.max_kept_effects)) + 1
else:
num_kept_effects = len(self.effects_to_keep)
effect_indices = effect_indices[:num_kept_effects]
# Index in effect settings
effect_names_to_apply = [self.effects_to_keep[i] for i in effect_indices]
effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
# Apply
dry_labels = []
for effect in effects_to_apply:
dry = effect(dry)
dry_labels.append(ALL_EFFECTS.index(type(effect)))
# Apply effects_to_remove
# Shuffle effects if specified
wet = torch.clone(dry)
if self.shuffle_removed_effects:
effect_indices = torch.randperm(len(self.effects_to_remove))
else:
effect_indices = torch.arange(len(self.effects_to_remove))
# Up to max_removed_effects
if self.max_removed_effects != -1:
num_kept_effects = int(torch.rand(1).item() * (self.max_removed_effects))
else:
num_kept_effects = len(self.effects_to_remove)
effect_indices = effect_indices[: self.max_removed_effects]
# Index in effect settings
effect_names_to_apply = [self.effects_to_remove[i] for i in effect_indices]
effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
# Apply
wet_labels = []
for effect in effects_to_apply:
wet = effect(wet)
wet_labels.append(ALL_EFFECTS.index(type(effect)))
wet_labels_tensor = torch.zeros(len(ALL_EFFECTS))
dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))
for label_idx in wet_labels:
wet_labels_tensor[label_idx] = 1.0
for label_idx in dry_labels:
dry_labels_tensor[label_idx] = 1.0
# Normalize
normalized_dry = self.normalize(dry)
normalized_wet = self.normalize(wet)
return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor
class VocalSetDatamodule(pl.LightningDataModule):
def __init__(
self,
train_dataset,
val_dataset,
test_dataset,
*,
batch_size: int,
num_workers: int,
pin_memory: bool = False,
**kwargs: int,
) -> None:
super().__init__()
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.test_dataset = test_dataset
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
def setup(self, stage: Any = None) -> None:
pass
def train_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.train_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=True,
)
def val_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.val_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
)
def test_dataloader(self) -> DataLoader:
return DataLoader(
dataset=self.test_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
shuffle=False,
)
|