File size: 11,056 Bytes
a3e84f7
 
 
7d6db8f
a3e84f7
c7866f1
a89496d
a3e84f7
 
7173e65
a3e84f7
 
f91cab1
a3e84f7
 
 
14ae0ea
8cb3861
e0a5f6f
14ae0ea
c7866f1
a3e84f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7866f1
b175ee9
e0a5f6f
 
 
 
 
93a34d1
8cb3861
 
 
93a34d1
 
8cb3861
 
7173e65
6990e4a
e0a5f6f
 
 
 
 
 
6990e4a
d8d3e30
e0a5f6f
 
8cb3861
4c773e2
8cb3861
 
e0a5f6f
8cb3861
 
 
 
 
 
c7866f1
a3e84f7
 
 
 
 
 
 
 
 
 
c7866f1
57c446b
c7866f1
 
 
 
 
 
 
 
 
 
7173e65
 
 
 
8125531
c7866f1
8125531
d8d3e30
7173e65
 
 
 
d8d3e30
4a7a6b8
 
c7866f1
a3e84f7
 
 
c7866f1
7173e65
a3e84f7
 
 
 
7173e65
e0a5f6f
c7866f1
7bb4fe3
7173e65
 
 
 
 
 
 
 
 
c7866f1
 
a3e84f7
 
7173e65
 
a3e84f7
e0a5f6f
8cb3861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93a34d1
 
 
8cb3861
 
4c773e2
93a34d1
 
 
 
 
 
 
 
 
8cb3861
 
93a34d1
 
8cb3861
 
 
c7866f1
8cb3861
4c773e2
8cb3861
 
 
 
a3e84f7
4c773e2
93a34d1
 
 
 
 
a3e84f7
4c773e2
8cb3861
 
4c773e2
a3e84f7
8cb3861
 
a3e84f7
8cb3861
 
4c773e2
fe64756
8cb3861
 
 
 
4c773e2
93a34d1
a3e84f7
93a34d1
 
4c773e2
 
8cb3861
 
4c773e2
a3e84f7
 
8cb3861
 
a3e84f7
 
 
 
 
 
 
 
 
 
c7866f1
 
 
 
7d6f241
a3e84f7
c7866f1
e0a5f6f
 
 
 
 
 
8125531
e0a5f6f
 
 
 
 
 
 
 
 
8125531
e0a5f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8125531
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
import sys
import glob
import torch
import shutil
import torchaudio
import pytorch_lightning as pl
import torch.nn.functional as F

from tqdm import tqdm
from pathlib import Path
from remfx import effects
from ordered_set import OrderedSet
from typing import Any, List, Dict
from torch.utils.data import Dataset, DataLoader
from remfx.utils import create_sequential_chunks


# https://zenodo.org/record/1193957 -> VocalSet

ALL_EFFECTS = effects.Pedalboard_Effects


singer_splits = {
    "train": [
        "male1",
        "male2",
        "male3",
        "male4",
        "male5",
        "male6",
        "male7",
        "male8",
        "male9",
        "female1",
        "female2",
        "female3",
        "female4",
        "female5",
        "female6",
        "female7",
    ],
    "val": ["male10", "female8"],
    "test": ["male11", "female9"],
}


class VocalSet(Dataset):
    def __init__(
        self,
        root: str,
        sample_rate: int,
        chunk_size: int = 262144,
        effect_modules: List[Dict[str, torch.nn.Module]] = None,
        effects_to_use: List[str] = None,
        effects_to_remove: List[str] = None,
        max_kept_effects: int = -1,
        max_removed_effects: int = 1,
        shuffle_kept_effects: bool = True,
        shuffle_removed_effects: bool = False,
        render_files: bool = True,
        render_root: str = None,
        mode: str = "train",
    ):
        super().__init__()
        self.chunks = []
        self.song_idx = []
        self.root = Path(root)
        self.render_root = Path(render_root)
        self.chunk_size = chunk_size
        self.sample_rate = sample_rate
        self.mode = mode
        self.max_kept_effects = max_kept_effects
        self.max_removed_effects = max_removed_effects
        self.effects_to_use = effects_to_use
        self.effects_to_remove = effects_to_remove
        self.normalize = effects.LoudnessNormalize(sample_rate, target_lufs_db=-20)
        self.effects = effect_modules
        self.shuffle_kept_effects = shuffle_kept_effects
        self.shuffle_removed_effects = shuffle_removed_effects
        effects_string = "_".join(self.effects_to_use + ["_"] + self.effects_to_remove)
        self.effects_to_keep = self.validate_effect_input()
        self.proc_root = self.render_root / "processed" / effects_string / self.mode

        # find all singer directories
        singer_dirs = glob.glob(os.path.join(self.root, "data_by_singer", "*"))
        singer_dirs = [
            sd for sd in singer_dirs if os.path.basename(sd) in singer_splits[mode]
        ]
        self.files = []
        for singer_dir in singer_dirs:
            self.files += glob.glob(os.path.join(singer_dir, "**", "**", "*.wav"))
        self.files = sorted(self.files)

        if self.proc_root.exists() and len(list(self.proc_root.iterdir())) > 0:
            print("Found processed files.")
            if render_files:
                re_render = input(
                    "WARNING: By default, will re-render files.\n"
                    "Set render_files=False to skip re-rendering.\n"
                    "Are you sure you want to re-render? (y/n): "
                )
                if re_render != "y":
                    sys.exit()
                shutil.rmtree(self.proc_root)

        self.num_chunks = 0
        print("Total files:", len(self.files))
        print("Processing files...")
        if render_files:
            # Split audio file into chunks, resample, then apply random effects
            self.proc_root.mkdir(parents=True, exist_ok=True)
            for audio_file in tqdm(self.files, total=len(self.files)):
                chunks, orig_sr = create_sequential_chunks(audio_file, self.chunk_size)
                for chunk in chunks:
                    resampled_chunk = torchaudio.functional.resample(
                        chunk, orig_sr, sample_rate
                    )
                    if resampled_chunk.shape[-1] < chunk_size:
                        # Skip if chunk is too small
                        continue

                    dry, wet, dry_effects, wet_effects = self.process_effects(
                        resampled_chunk
                    )
                    output_dir = self.proc_root / str(self.num_chunks)
                    output_dir.mkdir(exist_ok=True)
                    torchaudio.save(output_dir / "input.wav", wet, self.sample_rate)
                    torchaudio.save(output_dir / "target.wav", dry, self.sample_rate)
                    torch.save(dry_effects, output_dir / "dry_effects.pt")
                    torch.save(wet_effects, output_dir / "wet_effects.pt")
                    self.num_chunks += 1
        else:
            self.num_chunks = len(list(self.proc_root.iterdir()))

        print(
            f"Found {len(self.files)} {self.mode} files .\n"
            f"Total chunks: {self.num_chunks}"
        )

    def __len__(self):
        return self.num_chunks

    def __getitem__(self, idx):
        input_file = self.proc_root / str(idx) / "input.wav"
        target_file = self.proc_root / str(idx) / "target.wav"
        dry_effect_names = torch.load(self.proc_root / str(idx) / "dry_effects.pt")
        wet_effect_names = torch.load(self.proc_root / str(idx) / "wet_effects.pt")
        input, sr = torchaudio.load(input_file)
        target, sr = torchaudio.load(target_file)
        return (input, target, dry_effect_names, wet_effect_names)

    def validate_effect_input(self):
        for effect in self.effects.values():
            if type(effect) not in ALL_EFFECTS:
                raise ValueError(
                    f"Effect {effect} not found in ALL_EFFECTS. "
                    f"Please choose from {ALL_EFFECTS}"
                )
        for effect in self.effects_to_use:
            if effect not in self.effects.keys():
                raise ValueError(
                    f"Effect {effect} not found in self.effects. "
                    f"Please choose from {self.effects.keys()}"
                )
        for effect in self.effects_to_remove:
            if effect not in self.effects.keys():
                raise ValueError(
                    f"Effect {effect} not found in self.effects. "
                    f"Please choose from {self.effects.keys()}"
                )
        kept_fx = list(
            OrderedSet(self.effects_to_use) - OrderedSet(self.effects_to_remove)
        )
        kept_str = "randomly" if self.shuffle_kept_effects else "in order"
        rem_fx = self.effects_to_remove
        rem_str = "randomly" if self.shuffle_removed_effects else "in order"
        if self.max_kept_effects == -1:
            num_kept_str = len(kept_fx)
        else:
            num_kept_str = f"Up to {self.max_kept_effects}"
        if self.max_removed_effects == -1:
            num_rem_str = len(rem_fx)
        else:
            num_rem_str = f"Up to {self.max_removed_effects}"

        print(
            f"Effect Summary: \n"
            f"Apply kept effects: {kept_fx} ({num_kept_str}, chosen {kept_str}) -> Dry\n"
            f"Apply remove effects: {rem_fx} ({num_rem_str}, chosen {rem_str}) -> Wet\n"
        )
        return kept_fx

    def process_effects(self, dry: torch.Tensor):
        # Apply Kept Effects
        # Shuffle effects if specified
        if self.shuffle_kept_effects:
            effect_indices = torch.randperm(len(self.effects_to_keep))
        else:
            effect_indices = torch.arange(len(self.effects_to_keep))

        # Up to max_kept_effects
        if self.max_kept_effects != -1:
            num_kept_effects = int(torch.rand(1).item() * (self.max_kept_effects)) + 1
        else:
            num_kept_effects = len(self.effects_to_keep)
        effect_indices = effect_indices[:num_kept_effects]

        # Index in effect settings
        effect_names_to_apply = [self.effects_to_keep[i] for i in effect_indices]
        effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
        # Apply
        dry_labels = []
        for effect in effects_to_apply:
            dry = effect(dry)
            dry_labels.append(ALL_EFFECTS.index(type(effect)))

        # Apply effects_to_remove
        # Shuffle effects if specified
        wet = torch.clone(dry)
        if self.shuffle_removed_effects:
            effect_indices = torch.randperm(len(self.effects_to_remove))
        else:
            effect_indices = torch.arange(len(self.effects_to_remove))
        # Up to max_removed_effects
        if self.max_removed_effects != -1:
            num_kept_effects = int(torch.rand(1).item() * (self.max_removed_effects))
        else:
            num_kept_effects = len(self.effects_to_remove)
        effect_indices = effect_indices[: self.max_removed_effects]
        # Index in effect settings
        effect_names_to_apply = [self.effects_to_remove[i] for i in effect_indices]
        effects_to_apply = [self.effects[i] for i in effect_names_to_apply]
        # Apply

        wet_labels = []
        for effect in effects_to_apply:
            wet = effect(wet)
            wet_labels.append(ALL_EFFECTS.index(type(effect)))

        wet_labels_tensor = torch.zeros(len(ALL_EFFECTS))
        dry_labels_tensor = torch.zeros(len(ALL_EFFECTS))

        for label_idx in wet_labels:
            wet_labels_tensor[label_idx] = 1.0

        for label_idx in dry_labels:
            dry_labels_tensor[label_idx] = 1.0

        # Normalize
        normalized_dry = self.normalize(dry)
        normalized_wet = self.normalize(wet)

        return normalized_dry, normalized_wet, dry_labels_tensor, wet_labels_tensor


class VocalSetDatamodule(pl.LightningDataModule):
    def __init__(
        self,
        train_dataset,
        val_dataset,
        test_dataset,
        *,
        batch_size: int,
        num_workers: int,
        pin_memory: bool = False,
        **kwargs: int,
    ) -> None:
        super().__init__()
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.test_dataset = test_dataset
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.pin_memory = pin_memory

    def setup(self, stage: Any = None) -> None:
        pass

    def train_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.train_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=True,
        )

    def val_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.val_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=False,
        )

    def test_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.test_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=False,
        )