mattricesound commited on
Commit
7d6db8f
·
1 Parent(s): dcaaa71

Add random deterministic chunking to dataloader

Browse files
Files changed (4) hide show
  1. README.md +3 -3
  2. config.yaml +4 -2
  3. remfx/datasets.py +47 -14
  4. scripts/train.py +1 -2
README.md CHANGED
@@ -6,13 +6,13 @@
6
  4. `pip install -e umx`
7
 
8
  ## Download [GuitarFX Dataset] (https://zenodo.org/record/7044411/)
9
- `./download_egfx.sh`
10
 
11
  ## Train model
12
  1. Change Wandb variables in `shell_vars.sh`
13
- 2. `python train.py exp=audio_diffusion`
14
  or
15
- 2. `python train.py exp=umx`
16
 
17
  To add gpu, add `trainer.accelerator='gpu' trainer.devices=-1` to the command-line
18
 
 
6
  4. `pip install -e umx`
7
 
8
  ## Download [GuitarFX Dataset] (https://zenodo.org/record/7044411/)
9
+ `./scripts/download_egfx.sh`
10
 
11
  ## Train model
12
  1. Change Wandb variables in `shell_vars.sh`
13
+ 2. `python scripts/train.py exp=audio_diffusion`
14
  or
15
+ 2. `python scripts/train.py exp=umx`
16
 
17
  To add gpu, add `trainer.accelerator='gpu' trainer.devices=-1` to the command-line
18
 
config.yaml CHANGED
@@ -20,12 +20,14 @@ callbacks:
20
  filename: '{epoch:02d}-{valid_loss:.3f}'
21
 
22
  datamodule:
23
- _target_: datasets.Datamodule
24
  dataset:
25
- _target_: datasets.GuitarFXDataset
26
  sample_rate: ${sample_rate}
27
  root: ${oc.env:DATASET_ROOT}
28
  length: ${length}
 
 
29
  val_split: 0.2
30
  batch_size: 16
31
  num_workers: 8
 
20
  filename: '{epoch:02d}-{valid_loss:.3f}'
21
 
22
  datamodule:
23
+ _target_: remfx.datasets.Datamodule
24
  dataset:
25
+ _target_: remfx.datasets.GuitarFXDataset
26
  sample_rate: ${sample_rate}
27
  root: ${oc.env:DATASET_ROOT}
28
  length: ${length}
29
+ chunk_size_in_sec: 3
30
+ num_chunks: 10
31
  val_split: 0.2
32
  batch_size: 16
33
  num_workers: 8
remfx/datasets.py CHANGED
@@ -1,15 +1,17 @@
 
1
  from torch.utils.data import Dataset, DataLoader, random_split
2
  import torchaudio
3
  import torchaudio.transforms as T
4
  import torch.nn.functional as F
5
  from pathlib import Path
6
  import pytorch_lightning as pl
7
- from typing import Any, List
8
 
9
  # https://zenodo.org/record/7044411/
10
 
11
  LENGTH = 2**18 # 12 seconds
12
  ORIG_SR = 48000
 
13
 
14
 
15
  class GuitarFXDataset(Dataset):
@@ -18,13 +20,18 @@ class GuitarFXDataset(Dataset):
18
  root: str,
19
  sample_rate: int,
20
  length: int = LENGTH,
 
 
21
  effect_types: List[str] = None,
22
  ):
23
  self.length = length
24
  self.wet_files = []
25
  self.dry_files = []
 
26
  self.labels = []
27
  self.root = Path(root)
 
 
28
 
29
  if effect_types is None:
30
  effect_types = [
@@ -32,38 +39,64 @@ class GuitarFXDataset(Dataset):
32
  ]
33
  for i, effect in enumerate(effect_types):
34
  for pickup in Path(self.root / effect).iterdir():
35
- self.wet_files += sorted(list(pickup.glob("*.wav")))
36
- self.dry_files += sorted(
37
  list(self.root.glob(f"Clean/{pickup.name}/**/*.wav"))
38
  )
39
- self.labels += [i] * len(self.wet_files)
 
 
 
 
 
 
 
40
  print(
41
- f"Found {len(self.wet_files)} wet files and {len(self.dry_files)} dry files"
 
42
  )
43
  self.resampler = T.Resample(ORIG_SR, sample_rate)
44
 
45
  def __len__(self):
46
- return len(self.dry_files)
47
 
48
  def __getitem__(self, idx):
49
- x, sr = torchaudio.load(self.wet_files[idx])
50
- y, sr = torchaudio.load(self.dry_files[idx])
51
- effect_label = self.labels[idx]
 
 
 
 
 
 
52
 
53
  resampled_x = self.resampler(x)
54
  resampled_y = self.resampler(y)
55
- # Pad or crop to length
56
  if resampled_x.shape[-1] < self.length:
57
  resampled_x = F.pad(resampled_x, (0, self.length - resampled_x.shape[1]))
58
- elif resampled_x.shape[-1] > self.length:
59
- resampled_x = resampled_x[:, : self.length]
60
  if resampled_y.shape[-1] < self.length:
61
  resampled_y = F.pad(resampled_y, (0, self.length - resampled_y.shape[1]))
62
- elif resampled_y.shape[-1] > self.length:
63
- resampled_y = resampled_y[:, : self.length]
64
  return (resampled_x, resampled_y, effect_label)
65
 
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  class Datamodule(pl.LightningDataModule):
68
  def __init__(
69
  self,
 
1
+ import torch
2
  from torch.utils.data import Dataset, DataLoader, random_split
3
  import torchaudio
4
  import torchaudio.transforms as T
5
  import torch.nn.functional as F
6
  from pathlib import Path
7
  import pytorch_lightning as pl
8
+ from typing import Any, List, Tuple
9
 
10
  # https://zenodo.org/record/7044411/
11
 
12
  LENGTH = 2**18 # 12 seconds
13
  ORIG_SR = 48000
14
+ torch.manual_seed(123)
15
 
16
 
17
  class GuitarFXDataset(Dataset):
 
20
  root: str,
21
  sample_rate: int,
22
  length: int = LENGTH,
23
+ chunk_size_in_sec: int = 3,
24
+ num_chunks: int = 10,
25
  effect_types: List[str] = None,
26
  ):
27
  self.length = length
28
  self.wet_files = []
29
  self.dry_files = []
30
+ self.chunks = []
31
  self.labels = []
32
  self.root = Path(root)
33
+ self.chunk_size_in_sec = chunk_size_in_sec
34
+ self.num_chunks = num_chunks
35
 
36
  if effect_types is None:
37
  effect_types = [
 
39
  ]
40
  for i, effect in enumerate(effect_types):
41
  for pickup in Path(self.root / effect).iterdir():
42
+ wet_files = sorted(list(pickup.glob("*.wav")))
43
+ dry_files = sorted(
44
  list(self.root.glob(f"Clean/{pickup.name}/**/*.wav"))
45
  )
46
+ self.wet_files += wet_files
47
+ self.dry_files += dry_files
48
+ self.labels += [i] * len(wet_files)
49
+ for audio_file in wet_files:
50
+ chunks = create_random_chunks(
51
+ audio_file, self.chunk_size_in_sec, self.num_chunks
52
+ )
53
+ self.chunks += chunks
54
  print(
55
+ f"Found {len(self.wet_files)} wet files and {len(self.dry_files)} dry files.\n"
56
+ f"Total chunks: {len(self.chunks)}"
57
  )
58
  self.resampler = T.Resample(ORIG_SR, sample_rate)
59
 
60
  def __len__(self):
61
+ return len(self.chunks)
62
 
63
  def __getitem__(self, idx):
64
+ # Load effected and "clean" audio
65
+ song_idx = idx // self.num_chunks
66
+ x, sr = torchaudio.load(self.wet_files[song_idx])
67
+ y, sr = torchaudio.load(self.dry_files[song_idx])
68
+ effect_label = self.labels[song_idx] # Effect label
69
+
70
+ chunk_indices = self.chunks[idx]
71
+ x = x[:, chunk_indices[0] : chunk_indices[1]]
72
+ y = y[:, chunk_indices[0] : chunk_indices[1]]
73
 
74
  resampled_x = self.resampler(x)
75
  resampled_y = self.resampler(y)
76
+ # Pad to length if needed
77
  if resampled_x.shape[-1] < self.length:
78
  resampled_x = F.pad(resampled_x, (0, self.length - resampled_x.shape[1]))
 
 
79
  if resampled_y.shape[-1] < self.length:
80
  resampled_y = F.pad(resampled_y, (0, self.length - resampled_y.shape[1]))
 
 
81
  return (resampled_x, resampled_y, effect_label)
82
 
83
 
84
+ def create_random_chunks(
85
+ audio_file: str, chunk_size: int, num_chunks: int
86
+ ) -> List[Tuple[int, int]]:
87
+ """Create random chunks of size chunk_size (seconds) from an audio file.
88
+ Return sample_indices
89
+ """
90
+ audio, sr = torchaudio.load(audio_file)
91
+ chunk_size_in_samples = chunk_size * sr
92
+ chunks = []
93
+ for i in range(num_chunks):
94
+ start = torch.randint(0, audio.shape[-1] - chunk_size_in_samples, (1,)).item()
95
+ end = start + chunk_size_in_samples
96
+ chunks.append((start, end))
97
+ return chunks
98
+
99
+
100
  class Datamodule(pl.LightningDataModule):
101
  def __init__(
102
  self,
scripts/train.py CHANGED
@@ -6,7 +6,7 @@ import remfx.utils as utils
6
  log = utils.get_logger(__name__)
7
 
8
 
9
- @hydra.main(version_base=None, config_path=".", config_name="config.yaml")
10
  def main(cfg: DictConfig):
11
  # Apply seed for reproducibility
12
  print(cfg)
@@ -14,7 +14,6 @@ def main(cfg: DictConfig):
14
 
15
  log.info(f"Instantiating datamodule <{cfg.datamodule._target_}>.")
16
  datamodule = hydra.utils.instantiate(cfg.datamodule, _convert_="partial")
17
-
18
  log.info(f"Instantiating model <{cfg.model._target_}>.")
19
  model = hydra.utils.instantiate(cfg.model, _convert_="partial")
20
 
 
6
  log = utils.get_logger(__name__)
7
 
8
 
9
+ @hydra.main(version_base=None, config_path="../", config_name="config.yaml")
10
  def main(cfg: DictConfig):
11
  # Apply seed for reproducibility
12
  print(cfg)
 
14
 
15
  log.info(f"Instantiating datamodule <{cfg.datamodule._target_}>.")
16
  datamodule = hydra.utils.instantiate(cfg.datamodule, _convert_="partial")
 
17
  log.info(f"Instantiating model <{cfg.model._target_}>.")
18
  model = hydra.utils.instantiate(cfg.model, _convert_="partial")
19