File size: 1,480 Bytes
a89496d
 
 
 
 
 
ccecb22
a89496d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6db8f
a89496d
7d6db8f
a89496d
 
 
7d6db8f
 
a89496d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9589cd1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
defaults:
  - _self_
  - exp: null
seed: 12345
train: True
length: 262144
sample_rate: 48000
logs_dir: "./logs"
log_every_n_steps: 1000

callbacks:
  model_checkpoint:
    _target_: pytorch_lightning.callbacks.ModelCheckpoint
    monitor: "valid_loss"   # name of the logged metric which determines when model is improving
    save_top_k: 1           # save k best models (determined by above metric)
    save_last: True         # additionaly always save model from last epoch
    mode: "min"             # can be "max" or "min"
    verbose: False
    dirpath: ${logs_dir}/ckpts/${now:%Y-%m-%d-%H-%M-%S}
    filename: '{epoch:02d}-{valid_loss:.3f}'

datamodule:
  _target_: remfx.datasets.Datamodule
  dataset:
    _target_: remfx.datasets.GuitarFXDataset
    sample_rate: ${sample_rate}
    root: ${oc.env:DATASET_ROOT}
    length: ${length}
    chunk_size_in_sec: 3
    num_chunks: 10
  val_split: 0.2
  batch_size: 16
  num_workers: 8
  pin_memory: True

logger:
  _target_: pytorch_lightning.loggers.WandbLogger
  project: ${oc.env:WANDB_PROJECT}
  entity: ${oc.env:WANDB_ENTITY}
  # offline: False  # set True to store all logs only locally
  job_type: "train"
  group: ""
  save_dir: "."

trainer:
  _target_: pytorch_lightning.Trainer
  precision: 32 # Precision used for tensors, default `32`
  min_epochs: 0
  max_epochs: -1
  enable_model_summary: False
  log_every_n_steps: 1 # Logs metrics every N batches
  accumulate_grad_batches: 1
  accelerator: null
  devices: 1